Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-26T02:42:06.468Z Has data issue: false hasContentIssue false

Manganonewberyite, Mn(PO3OH)(H2O)3, the manganese analogue of newberyite from the Cassagna mine, Italy

Published online by Cambridge University Press:  02 January 2025

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA;
Fabrizio Castellaro
Affiliation:
Independent researcher, Mezzanego, GE, Italy
*
Corresponding author: Anthony R. Kampf; Email: [email protected]

Abstract

The new mineral manganonewberyite (IMA2024–004), Mn(PO3OH)(H2O)3, was found underground at the Cassagna mine, Liguria, Italy, where it is a secondary phase formed by the interaction of bat guano with Mn-rich rock. Manganonewberyite occurs with niahite, kutnohorite, sampleite and serrabrancaite on a tinzenite–quartz–braunite matrix. Crystals are prisms and blades, up to ∼0.15 mm long, elongated parallel to [001], flattened on {100} and exhibiting the forms {100}, {010} and {111}. Crystals are colourless and transparent, with vitreous lustre and white streak. The mineral is brittle with curved fracture. The Mohs hardness is ∼3. Cleavage is perfect on {010}. The density is 2.34(2) g·cm–3. Optically, manganonewberyite is biaxial (+) with α = 1.541(2), β = 1.547(2) and γ = 1.559(2) (white light). The 2V is 71.6(3)°. The optical orientation is X = a, Y = b and Z = c. The empirical formula is (Mn0.960Mg0.016Ca0.015)Σ0.991(H1.02P1.00O4)(H2O)3. Manganonewberyite is orthorhombic, space group Pbca, with cell parameters: a = 10.4273(6), b = 10.8755(8), c = 10.2126(4) Å, V = 1158.13(11) Å3 and Z = 8. The crystal structure (R1 = 2.79% for 892 I > 2σI reflections) is the same as that of newberyite with Mn in place of Mg.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: David Hibbs

References

Abbona, F., Boistelle, R. and Haser, R. (1979) Hydrogen bonding in MgHPO4·3H2O (newberyite). Acta Crystallographica, B35, 25142518.Google Scholar
Antraptseva, N.M., Solod, N.V. and О.О, Kravchenko. (2021) Features of the synthesis of solid solutions of divalent metal phosphates with a newberyite structure. Functional Materials, 28, 573579.Google Scholar
Bartl, H., Catti, M., Joswig, W. and Ferraris, G. (1983) Investigation of the crystal structure of newberyite, MgHPO4·3H2O, by single crystal neutron diffraction. TMPM - Tschermaks mineralogische und petrographische Mitteilungen, 32, 187194.Google Scholar
Cudennec, Y., Riou, A. and Gerault, Y. (1989) Manganese (II) hydrogenphosphate trihydrate. Acta Crystallographica, C45, 14111412.Google Scholar
de Lisle J.B.L, Romé. (1783) Cristallographie, ou description des formes propres à tous les corps de règne minéral. Vol. 2, 2nd edition. L‘impr. de Monsieur, Paris [pp. 421422].Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Frost, R.L., Palmer, S.J. and Pogson, R.E. (2011) Raman spectroscopy of newberyite Mg(PO3OH)·3H2O: A cave mineral. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 11491153.Google Scholar
Gagné, O.C. and F.C, Hawthorne (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C., and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Cooper, M.A., Nash, B.P., Cerling, T., Marty, J., Hummer, D.R., Celestian, A.J., Rose, T.P. and Trebisky, T.J. (2017) Rowleyite, [Na(NH4,K)9Cl4][V5+,4+2(P,As)O8]6·n[H2O,Na,NH4,K,Cl], a new mineral with a mesoporous framework structure. American Mineralogist, 102, 10371044.Google Scholar
Kampf, A.R., Ma, C., and Castellaro, F. (2024) Manganonewberyite, IMA 2024-003. CNMNC Newsletter. 79. Mineralogical Magazine, 88, 510513, https://doi.org/10.1180/mgm.2024.45.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana’s System of Mineralogy (7th Edition), Volume II. Yale University, USA [pp. 709711].Google Scholar
Sarp, H., Černý, R. and Guenee, L. (2001) Rouaite, Cu2(NO3)(OH)3, un nouveau minéral: sa description et sa structure cristalline (Alpes-Maritimes, France). Riviéra Scientifique, 85, 312.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
vom Rath, G. (1879) Note sur deux nouveaux phosphates du guano. Bulletin de la Société Minéralogique de France, 2, 7982.Google Scholar
Wells, H.L. and Penfield, S.L. (1885) Gerhardtite and artificial cupric nitrates. American Journal of Science, 30, 5057.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material
Download Kampf et al. supplementary material(File)
File 358.1 KB