Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T15:35:48.318Z Has data issue: false hasContentIssue false

Magnesio-riebeckite from the Varenche mine (Aosta Valley, Italy): crystal-chemical characterization of a grandfathered end-member

Published online by Cambridge University Press:  26 January 2018

Roberta Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, via Ferrata 1, I-27100 Pavia, Italy
Massimo Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Marco E. Ciriotti
Affiliation:
Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Cirié, Italy
*

Abstract

Magnesio-riebeckite from the dumps of the abandoned mine of Varenche (45°47’22’’ N, 7°29’17’’ E), Saint-Barthélemy, Nus, Aosta Valley (Italy), was studied to provide the complete mineral description (including crystal structure) and insights into the crystal-chemistry of riebeckite. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(Na0.09K0.01)Σ=0.10B(Na1.77Ca0.11Mg0.08Mn2+ 0:04)Σ=2.00C(Mg2.93Mn2+0:13Fe2+0:07Zn0.01Ni0.12Fe3+1:25Al0.48Ti0.01)Σ=5.00T(Si7.92Al0.08)Σ=8.00 O22W(OH1.88F0.12)Σ=2.00. Magnesio-riebeckite is biaxial (+), with α = 1.678(2), β = 1.682(2), γ = 1.688(2) and 2V (meas.) = 80.2(1.7)°, 2V (calc.) = 78.7°. The unit-cell parameters are a = 9.6481(14), b = 17.873(3), c = 5.3013(7) Å, β = 103.630(2)°, V = 888.4 (2)Å3, Z = 2, space group C2/m. The strongest ten reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 2.701, 100, (151); 8.303, 83, (110); 3.079, 62, (310); 3.391, 53, (131); 4.467, 50, (040,021); 2.522, 50, (̅202); 2.578, 35, (061); 2.155, 30, (261), 4.855, 30, (̅111), 2.300, 29, (̅351).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldelli, C., Dal Piaz, G.V. and Polino, R. (1983) Le quarziti a manganese e cromo di Varenche- St. Barthélemy, una sequenza di copertura oceanica della falda piemontese. Ofioliti, 8, 207221 [in Italian].Google Scholar
Barresi, A.A., Kolitsch, U., Ciriotti, M.E., Ambrino, P., Bracco, R. and Bonacina, E. (2005) La miniera di manganese di Varenche (Aosta, Italia nord-occidentale): ardennite, arseniopleite, manganberzeliite, pirofanite, sarkinite, thortveitite, nuovo As-Sc-analogo della metavariscite e altre specie. Micro, 3, 81122 [in Italian].Google Scholar
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J. B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.CrossRefGoogle Scholar
Bonazzi, P., Menchetti, S. and Reinecke, T. (1996) Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros Island, Greece. American Mineralogist, 81, 735742.CrossRefGoogle Scholar
Bruker (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Castello, P. (1981) Inventario delle mineralizzazioni a magnetite, ferro-rame e manganese del complesso piemontese dei calcescisti con pietre verdi in Valle d’Aosta. Ofioliti, 6, 546 [in Italian].Google Scholar
Colville, A.A. and Gibbs, G.V. (1964) Refinement of the crystal structure of riebeckite. Geological Society of America, Abstracts Annual Meetings, 82, 31.Google Scholar
Dal Piaz, G.B., Di Battistini, G., Kienast, J.R. and Venturelli, G. (1979) Manganesiferous quarzitic schists of the Piemonte ophiolite nappe in the Valsesia-Valtournanche area (Italian Western Alps). Memorie di Scienze Geologiche, 32, 424.Google Scholar
Ernst, W.G. (1957) Annual Report, Geophysics Laboratory. Carnegie Institute, Washington Year Book 56, p. 228.Google Scholar
Ernst, W.G. (1958) Annual Report, Geophysics Laboratory. Carnegie Institute, Washington Year Book 57, p. 199.Google Scholar
Ernst, W.G. (1959) Annual Report, Geophysics Laboratory. Carnegie Institute, Washington Year Book 58, p. 121.Google Scholar
Ernst, W.G. (1962) Synthesis, stability relations and occurrence of riebeckite and riebeckite-arfvedsonite solid solutions. Journal of Geology, 70, 689736.CrossRefGoogle Scholar
Ernst, W.G. (1968) Amphiboles. Springer-Verlag, New York, 125 pp.CrossRefGoogle Scholar
Hawthorne, F.C. (1978) The crystal structure and site chemistry of fluor-riebeckite. Canadian Mineralogist, 16, 187194.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. Canadian Mineralogist, 33, 907911.Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G.M. and Stalke, D. (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 310.CrossRefGoogle ScholarPubMed
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745750.CrossRefGoogle Scholar
Miyashiro, A. (1957) The chemistry, optics, and genesis of the alkali-amphiboles. Journal of Faculty of Science, University of Tokyo, Section II, 11, 5783.Google Scholar
Miyashiro, A. and Iwasaki, M. (1957) Magnesioriebeckite in crystalline schists of Bizan in Sikoku, Japan. Journal of the Geological Society of Japan, 63, 698703.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Zema, M., Hawthorne, F.C., Redhammer, G., Susta, U. and Della Ventura, G. (2018) The high-temperature behaviour of riebeckite: expansivity, deprotonation, selective Fe oxidation and a novel cation disordering scheme for amphiboles. European Journal of Mineralogy, in press.Google Scholar
Sauer, A. (1888) Ueber Riebeckit, ein neues Glied der Hornblendegruppe, sowie über Neubildung von Albit in granitischen Orthoklasen. Zeitschrift der Deutschen Geologischen Gesellschaft, 40, 138152 [in German].Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sørensen, H. (editor) (1974) The Alkaline Rocks. John Wiley and Sons, London, 622 pp.Google Scholar
Susta, U. (2016) Dehydration and Deprotonation Processes in Minerals: Development of New Spectroscopic Techniques. PhD Thesis, Università degli Studi Roma Tre, Italy, 177 pp.Google Scholar
Whittaker, E.J.W. (1949) The structure of Bolivian crocidolite. Acta Crystallographica, 2, 312317.CrossRefGoogle Scholar