Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T05:39:35.808Z Has data issue: false hasContentIssue false

Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin

Published online by Cambridge University Press:  05 July 2018

A. Embey-Isztin
Affiliation:
Department of Mineralogy and Petrology, Hungarian Natural History Museum, 14-16 Muzeum korut, H-1088 Budapest, H-1370 Pf: 330, Hungary
H. G. Scharbert
Affiliation:
Institute of Petrology, University of Vienna, Dr. Karl Lueger Ring 1, A-1010 Vienna
H. Dietrich
Affiliation:
Institute of Petrology, University of Vienna, Dr. Karl Lueger Ring 1, A-1010 Vienna
H. Poultidis
Affiliation:
Steyrerstrasse 14, A-4531, Kematen, Austria

Abstract

The Transdanubian Volcanic Region (TVR) is composed mainly of Pliocene alkali basalts, basanites, olivine basalts and olivine tholeiites, as well as rare nephelinites. The partial melting and genesis of alkali basaltic liquids is a consequence of an upwelling of the upper mantle which also caused thinning of the lithosphere and recent sinking of the Pannonian Basin.

Four different types of lower crustal and upper-mantle xenoliths are found within the TVR: garnet-free and garnet-bearing granulites, clinopyroxenites and spinel lherzolites. We present mineralogical and geochemical data on granulite facies and clinopyroxenite xenoliths from three localities in the Hungarian part of the TVR (Bondoróhegy, Szentbékálla and Szigliget). It is concluded that, whilst the protoliths of the granulite facies xenoliths were tholeiitic igneous rocks and could be part of an ancient crust, the clinopyroxenite xenoliths represent recent underplating and may have formed from an alkali basaltic liquid similar to the host lava. Planar contact relations between clinopyroxenites and spinel lherzolites as observed in composite xenoliths, as well as high Al-contents in clinopyroxenes, point to a high-pressure genesis in the upper mantle for these rocks. In contrast, geobarometrical estimates yielded only a moderate pressure range characteristic of lower crustal levels for the garnet-free granulite xenoliths (7–9 kbar). Nevertheless, two-pyroxene geothermometry yielded high temperatures of equilibration (>900°C) for these xenoliths, probably caused by advective heat transfer connected with underplating and in agreement with the high present-day geothermal gradient of this region. In the Central Range localities only garnet-free granulite xenoliths occur, whereas at the border of the TVR both garnet-free and garnet-bearing granulite facies nodules are found. It is possible that the incoming of garnet is retarded by higher temperatures in the lower crust below the Central Range.

It is also suggested that the difference in seismically measured crustal thickness between the Central Range and adjacent basin areas may be connected with different thermal conditions below these regions and that the seismically defined Moho and the petrological Moho do not necessarily coincide.

Type
Petrology and Experimental Studies
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adám, A. (1982) A kéreg és felsököpeny geoelektromos kutatása a Kárpát-medencében. MTA Föld és Bány. Tud. Oszt. Közl. 15, 221-36.Google Scholar
Bisztricsány, E., Wallner, A., Horváth, F., Meskó, A., Stegena, L., Tarcsai, Gy. and Posgay, K. (1979) Hungarian National IAPSEI Report, researches in seismology and physics of the Earth's interior, 1975-1978. Hungarian 1APSEI Rep., Gen. Ass. IUGG, Canberra, 37-54.Google Scholar
Amundsen, H. E. F., Griffin, W. L. and O'Reilly, S. (1987) The lower crust and upper mantle beneath northwestern Spitzbergen: evidence from xenoliths and geophysics. Tectonophysics, 139, 169-85.CrossRefGoogle Scholar
Aoki, K. I. and Kushiro, I. (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib. Mineral. Petrol. 18, 326-37.CrossRefGoogle Scholar
Balogh, K., Arva-Sós, E., Pécskay, Z., Ravasz-Baranyai, L. (1986) K/Ar dating of Post-Sarmatian alkali baslatic rocks in Hungary. Acta Min. Petr. Szeged 28, 7593.Google Scholar
Barton, P., Matthews, D., Hall, J. and Warner, M. (1984) Moho beneath the North Sea compared on normal incidence and wide-angle seismic records. Nature, 308, 55-6.CrossRefGoogle Scholar
Bence, A. E. and Albee, A. L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol. 76, 382-403.CrossRefGoogle Scholar
Bodri, L. (1981a) Geothermal model of the earth's crust in the Pannonian Basin. Tectonophysics, 79, 61-73.CrossRefGoogle Scholar
Bodri, L. (1981b) Three dimensional modelling of deep temperature and heat flow anomalies with applications to geothermics of the Pannonian Basin. Ibid. 79, 225-36.CrossRefGoogle Scholar
Bodri, L. and Bodri, B. (1977) Induced convectiona possible source mechanism of heat anomaly of the Pannonian Basin. Acta Geol. Hung. 21, 27-85.Google Scholar
Bultitude, R. J. and Green, D. H. (1971) Experimental study of crystal-liquid relationships at high pressures in olivine nephelinite and basanite compositions. J. Petrol. 12, 121-47.CrossRefGoogle Scholar
Cermrik, V. and Rybach, L. (1979) Terrestrial heatflow in Europe. Springer-Verlag Berlin-New York, pp. 328.Google Scholar
Dietrich, H. and Poultidis, H. (1985) Petrology of ultramafic xenoliths in alkali basalts from Klöch and Stradner Kogel, Styria, Austria. Neues Jahrb. Mineral., Abh. 151, 131-40.Google Scholar
Dostal, J., Dupuy, C. and Leyreloup, A. (1980) Geochemistry and Petrology of metaigneous granulitic xenoliths in Neogene volcanic rocks of the Massif Central (France). Implications for the lower crust. Earth Phmet. Sci. Lett. 50, 33-40.Google Scholar
Downes, H. and Leyreloup, A. (1986) Granulitic xenoliths from the French Massif Central—Petrology, Sr and Nd isotope systematics and model age estimates. In The nature of the lower continental crust (Dawson, J. B., Carswell, D. A., Holl, J. and Wedepohl, K. H., eds.) Geol. Soc. Spec. Publ. No. 24, 319-30.Google Scholar
Dövényi, P. and Horváth, F. (1988) A review of temperature, thermal conductivity, and heat flow data for the Pannonian Basin. In The Pannonian Basin A study of basin evolution (Royden, L. H. and Horvfith, F., eds.. AAPG Memoir 45, 195-210.Google Scholar
Dupuy, C., Leyreloup, A. and Vernieres, J. (1977) The lower continental crust of the Massif Central (Bournac, France)special reference to REE, U and Th composition, evolution, heat flow production. Phys. Chem. Earth, 11, 401-16.Google Scholar
Edel, I. B., Fuchs, K., Gelke, C. and Prohdel, K. (1975) Deep structure of the southern Rhine Graben area from seismic refraction investigation. Geophys. 41, 333-56.Google Scholar
Ellis, D. J. and Green, D. H. (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 71, 13-22.CrossRefGoogle Scholar
Embey-Istzin, A. (1976a) Amphibolite/lherzolite composite xenolith from Szigliget, north of the Lake Balaton, Hungary. Earth Planet. Sci. Lett. 31, 297-304.CrossRefGoogle Scholar
Embey-Istzin, A. (1976b) Lherzolite nodules of upper mantle origin in the alkali olivine basaltic, basanitic rocks of Hungary. Földt. Közl. 106, 42-51.Google Scholar
Embey-Istzin, A. (1978) On the petrology of spinel lherzolite nodules in basaltic rocks from Hungary and Auvergne, France. Annls. hist.-nat. Mus. natn. Hung. 70, 27-44.Google Scholar
Embey-Istzin, A. (1981) Statistical analysis of major element patterns in basaltic rocks of Hungary. Acta Geol. Acad. Sci. Hung. 24, 351-68.Google Scholar
Embey-Istzin, A. (1984) Textural types and their relative frequencies in ultramafic and mafic xenoliths from Hungarian alkali basaltic rocks. Annls.-nat. Mus. natn. Hung. 76, 27-42.Google Scholar
Embey-Istzin, A. and Scharbert, H. G. (1981) Bericht über geochemisch-petrologische Untersuchungen an Basalten yon Kovácsi-hegy und von Uzsabámya (Tátika-Gruppe), Ungarn. Anzeiger der Math.-Naturw. Klasse der Osterreichischen Akademie der Wissenschaften. Nr. 5, 67-72.Google Scholar
Embey-Istzin, A., Dietrich, H. and Poultidis, H. (1989) Petrology and Geochemistry of peridotite xenoliths in alkali basalts from the Transdanubian Volcanic Region, West-Hungary. J. Petrol. 30, 79-105.CrossRefGoogle Scholar
Frey, F. and Prinz, M. (1978) Ultramafic inclusions from San Carlos, Arizona: Petrological and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett. 38, 129-76.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. E. (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. Cosmochim. Acta, 31, 767-833.CrossRefGoogle Scholar
Griffin, W. L., Wass, S. Y. and Hollis, D. (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk maars, Victoria, Australia: Petrology of a subcontinental crust-mantle transition. J. Petrol. 25, 53-87.CrossRefGoogle Scholar
Griffin, W. L. and O'Reilly, S. Y. (1986) The lower crust in eastern Australia: xenolith evidence. In The nature of the lower continental crust (Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H., eds.) Geol. Soc. Spec. Publ. No. 24, 363-74.Google Scholar
Carswell, D. A. (1987) The composition of the lower crust and the nature of the continental Moho—xenolith evidence. In Mantle xenoliths (Nixon, P., ed.) John Wiley and Sons Ltd, 413-30.Google Scholar
Harley, S. L. and Green, D. H. (1982) Garnet-orthopyroxene barometry for granulites and peridotites. Nature, 300, 697701.CrossRefGoogle Scholar
Hauser, A. (1954) Der steierische Vulkanbogen als magmatische Provinz. Tscherm. Mineral. Petr. Mitt. 4, 301-11.CrossRefGoogle Scholar
Heritsch, H. (1967) Uber die Magmenentfaltung des steierischen Vulkanbogens. Contrib. Mineral. Petrol. 15, 330-44.CrossRefGoogle Scholar
Herzberg, C. T. (1978) The bearing of phase equilibria in simple and complex systems on the origin and evolution of some well-documented garnet websterites. Ibid. 66, 375-82.CrossRefGoogle Scholar
Horváth, F., Bodri, L. and Ottlik, P. (1979) Geothermics of Hungary and the tectonophysics of the Pannonian Basin red spot. In Terrestrial heatflow in Europe. Springer Verlag, Berlin-Heidelberg-New York, 206-17.CrossRefGoogle Scholar
Hutchison, R. and Gass, I. G. (1971) Mafic and ultramafic inclusions associated with undersaturated basalt on Kod Ali Island, southern Red Sea. Contrib. Mineral. Petrol. 31, 94-101.CrossRefGoogle Scholar
Irving, A. J. (1974) Geochemistry and high pressure experimental study of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pypes, Australia. J. Petrol. 15, 1-40.CrossRefGoogle Scholar
Irving, A. J. (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Amer. J. Sci. 280A, 389-426.Google Scholar
Kay, R. and Kay, S. N. (1981) The nature of the lower continental crust: inference from geophysics, surface geology and crustal xenoliths. Rev. Geophys. Space Phys. 19, 271-97.CrossRefGoogle Scholar
Kornprobst, J. (1970) Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): Etude des péridotites de haute température et de haute pression, et des pyroxenolites à grenat ou sans grenat, qui leur sont associes. Contrib. Mineral. Petrol. 23, 283-322.CrossRefGoogle Scholar
Kurat, G. (1971) Granat-Spinell Websterit und Lherzolith aus dem Basalttuff von Kapfenstein, Steiermark. Tscherm. Mineral. Petr. Mitt. 16, 192-214.CrossRefGoogle Scholar
Kurat, G., Kracher, A. and Scharbert, H. G. (1976) Petrologie des oberen Erdmantels unterhalb Kapfenstein, Steiermark. (Abstract) Fortschr. Miner. 54, 53-4.Google Scholar
Kurat, G., Palme, H., Spettel, B., Baddenhausen, H., Hofmeister, H., Palme, Ch. and Wanke, H. (1980) Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for variety of upper mantle processes. Geochim. Cosmochim. Acta, 44, 45-60.CrossRefGoogle Scholar
Leake, B. (1978) Nomenclature of amphiboles. Mineral. Mag. 42, 533-63.CrossRefGoogle Scholar
Lovering, J. E. and White, A. J. R. (1964) The significance of primary scapolite in granulitic inclusions from deep seated pipes. J. Petrol. 5, 195-218.CrossRefGoogle Scholar
Meissner, R., Lüschen, E. and Flüh, E. R. (1983) Studies of the continental crust by near-vertical reflection methods: a review. Phys. Earth Planet. Interior, 31, 363-76.CrossRefGoogle Scholar
MeskO, A. (1982) Gravitációs és máigneses vizsgálatok. MTA Föld. Bány. Tud. Oszt. Közl. 15, 277-94.Google Scholar
Mituch, E. and Posgay, K. (1972) The crustal structure of central and southeastern Europe based on the results of explosion seismology, Hungary. Geofiz. Közl. (Special edition) 118-29.Google Scholar
Nixon, P. H. and Boyd, F. R. (1973) Petrogenesis of the granular and sheared ultramafic nodule suite in kimberlites. In Lesotho kimberlites (Nixon, P. H., ed.), 4856.Google Scholar
O'Reilly, S. Y. and Griffin, W. L. (1985) A xenolith-derived geotherm for southeastern Australia and its geophysical implications. Tectonophys. 111, 41-63.CrossRefGoogle Scholar
O'Reilly, S. Y. and Griffin, W. L. (1987) Is the continental Moho the crust-mantle boundary. Geology, 15, 241-4.Google Scholar
Okrusch, M., Schröder, B. and Schnütgen, A. (1979) Granulite facies metabasite ejecta in the Laacher See area, Eifel, West Germany. Lithos, 12, 251-70.CrossRefGoogle Scholar
Padovani, E. R. and Carter, J. L. (1977) Aspects of the deep crustal evolution beneath south central New Mexico. In The earth's crust (Heacock, J. F., ed.). Geophys. Monogr. 20, 1956.Google Scholar
Pantó, Gy., Salters, V. J. N. and Hart, S. R. (1988) Origin of late Cenozoic volcanic rocks of the Carpathian Arc, Hungary. In The Pannonian BasinA study in basin evolution (Royden, L. H. and Horváth, F., eds.). AAPG Memoir 45, 279-92.Google Scholar
Posgay, K. (1975) Mit Reflexionsmessungen bestimmte Horizonte und Geschwindigkeitsverteilungen in der Erdkruste und im Erdmantel. Geofiz. Közl. 23, 13-8.Google Scholar
Posgay, K. (1982) A kéreg- és felsököpenyszerkezet kutatása szeizmikus módszerrel. MTA Föld. Bány. Tud. Oszt. Közl. 15, 237-47.Google Scholar
Poultidis, H. (1981) Petrologie und Geochemie basaltischer Gesteine des Steirischen Volkanbogens in Steiermark und in Burgenland. Ph.D. thesis, University of Vienna.Google Scholar
Poultidis, H. and Scharbert, H. G. (1986) Bericht über geochemisch-petrologische Untersuchungen an basaltischen Gesteinen des österreichischen Teils der Transdanubischen Vulkanischen Region. Anz. Akad. Wiss., Math.-natw. Kl. 123, 65-76.Google Scholar
Richter, W. (1971) Ariegite, Spinel-Peridotite und Phlogopit-Klinopyroxenite aus dem Tuff von Tobaj im sódlichen Burgenland. Tscherm. Mineral. Petr. Mitt. 16, 227-51.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and petrology of the earth's mantle. McGraw Hill, New York, pp. 618.Google Scholar
Ross, C. S., Foster, M. D. and Myers, A. T. (1954) Origin of dunites and of olivine-rich inclusions in basaltic rocks. Amer. Min. 39, 693-737.Google Scholar
Sass, J. H. and Lachenbruch, A. H. (1979) Thermal regime of the Australian continental crust. In The earth, its origin, structure and evolution (McElhinny, , ed.) Academic Press London, 301-52.Google Scholar
Schadler, J. (1913) Zur Kenntnis der Einschlüsse in dem siidsteirischen Basalttuffen und ihre Mineralien. Tscherm. Mineral. Petr. Mitt. 32, 485-511.Google Scholar
Scharbert, H. G. (1971) Kyanite and sillimanite in Moldanubischen granulites. Ibid. 16, 252-67.Google Scholar
Scharbert, H. G. and Kurat, G. (1974) Distribution of some elements between coexisting ferromagnesian minerals in Moldanubian granulite facies rocks, Lower Austria, Austria. Ibid. 21, 110-32.CrossRefGoogle Scholar
Smith, D. and Ehrenberg, S. N. (1984) Zoned minerals in garnet peridotite nodules from the Colorado Plateau: implications for mantle metasomatism and kinetics. Contrib. Mineral. Petrol. 86, 274-85.CrossRefGoogle Scholar
Stosch, H. G. (1987) Constitution and evolution of subcontinental upper mantle and lower crust in areas of young volcanism: Differences and similarities between the Eifel (F.R. Germany) and Tariat Depression (central Mongolia) as evidenced by peridotite and granulite xenoliths. Fortschr. Mineral. 65, 49-86.Google Scholar
Stosch, H. G. and Lugmair, G. W. (1984) Evolution of the lower continental crust: granulite facies xenoliths from the Eifel, West Germany. Nature, 311, 368-70.CrossRefGoogle Scholar
Stosch, H. G., Lugmair, G. W. and Seck, H. A. (1986) Geochemistry of granulite-facies lower crustal xenoliths: implications for the geological history of the lower continental crust below the Eifel, West Germany. In The nature of the lower continental crust (Dawson, J. B. et al., eds.), Geol. Soc. Spec. Publ. No. 24, 309-17.Google Scholar
Sutherland, F. I., Hollis, J. D. and Barron, L. M. (1984) Garnet lherzolite and other inclusions from a basalt flow, Bow Hill, Tasmania. In Kimberlite H (Kornprobst, J., ed.), 45160.Google Scholar
Trunkó, L. (1969) Geologie yon Ungarn. Borntraegel Berlin-Stuttgart, pp. 257.Google Scholar
Turner, F. C. and Verhoogen, J. (1960) Igneous and metamorphic petrology. McGraw-Hill New York-Toronto-London, pp. 694.Google Scholar
Upton, B. G. J., Aspen, P. and Hunter, R. H. (1984) Xenoliths and their implications for the deep geology of the Midland Valley of Scotland and adjacent regions. Trans. Roy. Soc. Edinburgh: Earth Sci. 75, 6570.Google Scholar
Wass, S. Y. and Hollis, J. D. (1983) Crustal growth on southeastern Australia evidence from lower crustal eclogitic and granulitic xenoliths. J. Met. Geol. 1, 25-45.CrossRefGoogle Scholar
Wells, P. R. A. (1977) Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol. 62, 129-39.CrossRefGoogle Scholar
Wilkinson, J. F. G. (1975) An Al-spinel ultramafic-mafic inclusions suite and high pressure megacrysts in an analcimite and their bearing on basaltic fractionation at elevated pressure. Ibid. 34, 71-104.CrossRefGoogle Scholar
Wilson, C. R. and Smith, D. (1984) Cooling-rate estimates from mineral zonation: Resolving power and applications. In Kimberlite II (Kornprobst, J., ed.), 265-75.Google Scholar
Wilshire, H. G. and Shervais, J. W. (1975) Al-augite and Cr-diopside ultramafic xenoliths in rocks from western United States. Phys. Chem. Earth, 9, 25-72.CrossRefGoogle Scholar
Wood, B. J. and Banno, S. (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol. 42, 109-24.CrossRefGoogle Scholar