Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T01:48:31.135Z Has data issue: false hasContentIssue false

The low-temperature behaviour of cancrinite:an in situ single-crystal X-ray diffraction study

Published online by Cambridge University Press:  05 July 2018

G. Diego Gatta*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy CNR-Istituto per la Dinamica dei Processi Ambientali, Milano, Italy
P. Lotti
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
V. Kahlenberg
Affiliation:
Institut für Mineralogie und Petrographie, Leopold Franzens Universität Innsbruck, Innrain 52, A - 6020 Innsbruck, Austria
U. Haefeker
Affiliation:
Institut für Mineralogie und Petrographie, Leopold Franzens Universität Innsbruck, Innrain 52, A - 6020 Innsbruck, Austria
*

Abstract

The low-temperature structural behaviour of natural cancrinite with a formula Na6.59Ca0.93[Si6.12Al5.88O24](CO3)1.04F0.41·2H2O has been investigated by means of in situ single-crystal X-ray diffraction and Raman spectroscopy. High quality structure refinements were obtained at 293, 250, 220, 180, 140, 100 and at 293 K again (at the end of the low-T experiments). The variation in the unit-cell volume as a function of temperature (T) exhibits a continuous trend, without any evident thermoelastic anomaly. The thermal expansion coefficient αV = (1/V)∂V/∂T is 3.8(7) × 10–5 K–1 (between 100 and 293 K). The structure refinement based on intensity data collected at ambient conditions after the low-T experiment confirmed that the low-T induced deformation processes are completely reversible. The extraframework population does not show significant variations down to 100 K. The strong positional disorder of the carbonate groups along the c axis persists within the T range investigated. The structural behaviour of cancrinite at low-T is mainly governed by the continuous framework rearrangement through the ditrigonalization of the six-membered rings which lie in a plane perpendicular to [0001], the contraction of the four-membered ring joint units, the decrease of the ring corrugation in the (0001) plane, and the flattening of the cancrinite cages. A list of the principal Raman active modes in ambient conditions is provided and discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baerlocher, C., McCusker, L.B. and Olson, D.H. (2007) Atlas of Zeolite Framework types, sixth edition. Elsevier, Amsterdam.Google Scholar
Ballirano, P. and Maras, A. (2005) The crystal structure of a “disordered” cancrinite. European Journal of Mineralogy, 16, 135141.CrossRefGoogle Scholar
Barnes, M.C., Addai-Mensah, J. and Gerson, A.R. (1999) The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor. Microporous and Mesoporous Materials, 31, 287302.CrossRefGoogle Scholar
Bickmore, B.R., Nagy, K.L., Young, J.S. and Drexler, J.W. (2001) Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions. Environmental Science and Technology, 35, 44814486.CrossRefGoogle ScholarPubMed
Bonaccorsi, E. and Merlino, S. (2005) Modular microporous minerals: cancrinite-davyne group and C-S-H phases. Pp. 241290 in: Micro-and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.CrossRefGoogle Scholar
Bonaccorsi, E., Della Ventura, G, Bellatreccia, F. and Merlino, S. (2007) The thermal behaviour and dehydration of pitiglianoite, a mineral of the cancrinite-group. Microporous and Mesoporous Materials, 99, 225235.Google Scholar
Bresciani-Pahor, N., Calligaris, M., Nardin, G and Randaccio, L. (1982) Structure of a basic cancrinite. Acta Crystallographica, B38, 893895.CrossRefGoogle Scholar
Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Pp. 198 in: Micas: Crystal Chemistry & Metamorphic Petrology (A. Mottana, F.P. Sassi, J.B. Jr, Thompson and Guggenheim, S., editors) Reviews in Mineralogy and Geochemistry, 46. Mineralogical Society of America, Washington, DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Brown, W.L. and Cesbron, F. (1973) Sur les surstructures des cancrinites. Comptes Rendus de l’Academie de Sciences, 276 (Aer. D), 14.Google Scholar
Buck, E.C. and McNamara, B.K. (2004) Precipitation of nitrate-cancrinite in Hanford tank sludge. Environmental Science and Technology, 38, 44324438.CrossRefGoogle ScholarPubMed
Buhl, J.C., Stief, F., Fechtelkord, M., Gesing, T.M., Taphorn, U. and Taake, C. (2000) Synthesis, X-ray diffraction and MAS NMR characteristics of nitrate cancrinite Na7 6[AlSiO4]6(NO3)i 6(H2O)2 . Journal of Alloys and Compounds, 305, 93102.CrossRefGoogle Scholar
Camara, F., Bellatreccia, F., Della Ventura, G and Mottana, A. (2005) Farneseite, a new mineral of the cancrinite-sodalite group with a 14 layer stacking sequence: occurrence and crystal structure. European Journal of Mineralogy, 17, 839846.CrossRefGoogle Scholar
Camara, F., Bellatreccia, F., Della Ventura, G, Mottana, A., Bindi, L., Gunter, M.E. and Sebastiani, M. (2010) Fantappieite, a new mineral of the cancrinite-sodalite group with a 33-layer stacking sequence: occurrence and crystal structure. American Mineralogist, 95, 472480.CrossRefGoogle Scholar
Della Ventura, G, Bellatreccia, F., Parodi, G.C., Camara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713721.CrossRefGoogle Scholar
Della Ventura, G, Gatta, G.D., Redhammer, G.J., Bellatreccia, F., Loose, A. and Parodi, G.C. (2009) Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite. Physics and Chemistry of Minerals, 36, 193206.CrossRefGoogle Scholar
Downs, R.T. (2006) RRUFF database. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan, O0313.Google Scholar
Dutta, P.K. and Del Barco, B. (1985) Structure-sensitive Raman bands in hydrated zeolite A. Journal of the Chemical Society, Chemical Communications, 1985, 12971299.CrossRefGoogle Scholar
Dutta, P.K. and Puri, M. (1987) Synthesis and structure of zeolite ZSM-5—a Raman-spectroscopic study. Journal of Physical Chemistry, 91, 43294333.CrossRefGoogle Scholar
Fechtelkord, M., Stief, F. and Buhl, J.C. (2001) Sodium cation dynamics in nitrate cancrinite: a low and high temperature Na and H MAS NMR study and high temperature Rietveld structure refinement. American Mineralogist, 86, 165175.CrossRefGoogle Scholar
Foit, F.F. Jr, Peacor, D.R. and Heinrich, E.W.M. (1973) Cancrinite with a new superstructure from Bancroft, Ontario. The Canadian Mineralogist, 11, 940951.Google Scholar
Frost, R.L., Bahfenne, S. and Graham, J.E. (2009) A Raman spectroscopic study of the antimony mineral klebelsbergite Sb4O4(OH)2(SO4). Journal of Raman Spectroscopy, 40, 855860.CrossRefGoogle Scholar
Gatta, GD. (2005) A comparative study of fibrous zeolites under pressure. European Journal of Mineralogy, 17, 411421.CrossRefGoogle Scholar
Gatta, GD. and Lee, Y. (2008) Pressure-induced structural evolution and elastic behaviour of Na6Cs2Ga6Ge(5O24-Ge(OFf)(5 variant of cancrinite: a synchrotron powder diffraction study. Microporous and Mesoporous Materials, 116, 5158 CrossRefGoogle Scholar
Gatta, GD. and Lotti, P. (2011) On the low-temperature behavior of the zeolite gobbinsite: a single-crystal X-ray diffraction study. Microporous and Mesoporous Materials, 143, 467476.CrossRefGoogle Scholar
Gatta, G.D., Boffa Ballaran, T., Comodi, P. and Zanazzi, P.F. (2004) Comparative compressibility and equation of state of orthorhombic and tetragonal edingtonite. Physics and Chemistry of Minerals, 31, 288298.CrossRefGoogle Scholar
Gatta, G.D., Kahlenberg, V., Kaindl, R., Rotiroti, N., Cappelletti, P. and de’ Gennaro, M. (2010) Crystal-structure and low-temperature behavior of “disordered” thomsonite. American Mineralogist, 95, 495502.CrossRefGoogle Scholar
Gerson, A.R and Zheng, K. (1997) Bayer process plant scale: transformation of sodalite to cancrinite. Journal of Crystal Growth, 171, 209218.CrossRefGoogle Scholar
Grundy, H.D. and Hassan, I. (1982) The crystal structure of a carbonate-rich cancrinite. The Canadian Mineralogist, 20, 239251.Google Scholar
Hassan, I. and Buseck, P.R. (1992) The origin of the superstructure and modulations in cancrinite. The Canadian Mineralogist, 30, 4959.Google Scholar
Hassan, I. and Grundy, H.D. (1984) The character of the cancrinite—vishnevite solid solution series. The Canadian Mineralogist, 22, 333340.Google Scholar
Hassan, I. and Grundy, H.D. (1991) The crystal structure of basic cancrinite, ideally Na8[Al6Si6O24] (OH)2-3H2O. The Canadian Mineralogist, 29, 377383.Google Scholar
Hassan, I., Antao, S.M. and Parise, J.B. (2006) Cancrinite: crystal structure, phase transitions, and dehydration behavior with temperature. American Mineralogist, 91, 11171124.CrossRefGoogle Scholar
Isupova, D., Ida, A., Kihara, K., Morishita, T. and Bulka, G. (2010) Asymmetric thermal vibrations of atoms and pyroelectricity in cancrinite. Journal of Mineralogical and Petrological Sciences, 105, 2941.CrossRefGoogle Scholar
Jarchow, O. (1965) Atomanordnung und strukturverfei-nerung von Cancrinit. Zeitschrift fur Kristallografie, 122, 407422.CrossRefGoogle Scholar
Lindner, GG, Hoffmann, K., Witke, K., Reinen, D., Heinemann, C. and Koch, W. (1996) Spectroscopic properties of Se-2(2-) and Se-2(-) in cancrinite. Journal of Solid State Chemistry, 126, 5054.Google Scholar
Lotti, P., Gatta, G.D., Rotiroti, N. and Camara, F. (2012) High-pressure study of a natural cancrinite. American Mineralogist, 97, 872882.CrossRefGoogle Scholar
McCusker, L.B., Liebau, F. and Engelhardt, G. (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesopor-ous materials with inorganic hosts. Pure and Applied Chemistry, 73, 381394.CrossRefGoogle Scholar
Mozgawa, W. (2001) The relation between structure and vibrational spectra of natural zeolites. Journal of Molecular Structure, 596, 129137.CrossRefGoogle Scholar
Nakamoto, K., Fujita, J., Tanaka, S. and Kobayashi, M. (1957) Infrared spectra of metallic complexes IV. Comparison of the infrared spectra of unidentate and bidentate metallic complexes. Journal of the American Chemical Society, 79, 49044908.CrossRefGoogle Scholar
Oxford Diffraction (2008) Xcalibur CCD System, CrysAlis Software System. Oxford Diffraction Ltd, Oxford, UK.Google Scholar
Pauling, L. (1930) The structure of some sodium and calcium aluminosilicates. Proceedings of the National Academy of Sciences, 16, 453459.CrossRefGoogle ScholarPubMed
Poborchii, V.V. (1994) Structure of one-dimensional selenium chains in zeolite channels by polarized Raman scattering. Journal of Physics and Chemistry of Solids, 55, 737774.CrossRefGoogle Scholar
Poborchii, V.V., Lindner, G.G. and Sato, M. (2002) Selenium dimers and linear chains in one-dimen-sional cancrinite nanochannels: structure, dynamics, and optical properties. Journal of Chemical Physics, 116, 26092617.CrossRefGoogle Scholar
Rastvetaeva, R, Pekov, I., Chukanov, N., Rozenberg, K and Olysych, L. (2007) Crystal structures of low-symmetry cancrinite and cancrisilite varieties. Crystallography Reports, 52, 811818.Google Scholar
Sheldrick, GM. (1997) SHELX-97-A program for crystal structure refinement. University of Gottingen, Gottingen, Germany.Google Scholar
Wilson, AJ.C. and Prince, E. (1999) International Tables for Crystallography Vol. C, Mathematical, Physical and Chemical tables, second edition. Kluwer, Dordrecht, The Netherlands.Google Scholar
Wopenka, B., Freeman, J.J. and Nikisher, T. (1998) Raman spectroscopic identification of fibrous natural zeolites. Applied Spectroscopy, 52, 5463.CrossRefGoogle Scholar
Zhao, H, Deng, Y., Harsh, J.B., Flury, M. and Boyle, J.S. (2004) Alteration of kaolinite to cancrinite and sodalite by simulated Hanford tank waste and its impact on cesium retention. Clays and Clay Minerals, 52, 113.CrossRefGoogle Scholar
Supplementary material: File

Gatta et al. supplementary material

Anisotropic displacement parameters

Download Gatta et al. supplementary material(File)
File 208.4 KB