Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T02:42:19.106Z Has data issue: false hasContentIssue false

Leydetite, Fe(UO2)(SO4)2(H2O)11, a new uranyl sulfate mineral from Mas d’Alary, Lodève, France

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-18221 Prague 8, Czech Republic
A. V. Kasatkin
Affiliation:
V/O “Almazjuvelirexport”, Ostozhenka Street, 22, block 1, 119034 Moscow, Russia
R. Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 4 611 37, Brno, Czech Republic
M. Novák
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 4 611 37, Brno, Czech Republic
A. Kallistová
Affiliation:
Institute of Geology ASCR, v.v.i., Rozvojová 269, Prague 6, 16500, Czech Republic
M. Dušek
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-18221 Prague 8, Czech Republic
R. Skála
Affiliation:
Institute of Geology ASCR, v.v.i., Rozvojová 269, Prague 6, 16500, Czech Republic
K. Fejfarová
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-18221 Prague 8, Czech Republic
J. Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 170, CZ-193 00, Prague 9, Czech Republic
N. Meisser
Affiliation:
Musée géologique cantonal and Laboratoire des rayons-X, Institut de minéralogie et de géochimie, Université de Lausanne, 1015 Lausanne-Dorigny, Switzerland
H. Goethals
Affiliation:
Musée de l’Institut royal des sciences naturelles de Belgique, Section mineralogy, Rue Vautier 29, 1000 Brussels, Belgium
V. Machovič
Affiliation:
Institute of Chemical Technology, Prague, Technická 5, CZ–16628, Prague 6, Czech Republic Institute of Rock Structures and Mechanics ASCR, v.v.i., V Holešovičkách 41, CZ–18209, Prague 8, Czech Republic
L. Lapčák
Affiliation:
Institute of Chemical Technology, Prague, Technická 5, CZ–16628, Prague 6, Czech Republic
*

Abstract

Leydetite, monoclinic Fe(UO2)(SO4)2(H2O)11(IMA 2012–065), is a new supergene uranyl sulfate from Mas d'Alary, Lodève, Hérault, France. It forms yellow to greenish, tabular, transparent to translucent crystals up to 2 mm in size. Crystals have a vitreous lustre. Leydetite has a perfect cleavage on (001). The streak is yellowish white. Mohs hardness is ∼2. The mineral does not fluoresce under long- or short-wavelength UV radiation. Leydetite is colourless in transmitted light, non-pleochroic, biaxial, with α = 1.513(2), γ = 1.522(2) (further optical properties could not be measured). The measured chemical composition of leydetite, FeO 9.28, MgO 0.37, Al2O30.26, CuO 0.14, UO340.19, SO321.91, SiO20.18, H2O 27.67, total 100 wt.%, leads to the empirical formula (based on 21 O a.p.f.u.), (Fe0.93Mg0.07Al0.04Cu0.01)Σ1.05(U1.01O2)(S1.96Si0.02)Σ1.98O8(H2O)11. Leydetite is monoclinic, space group C2/c, with a = 11.3203(3), b = 7.7293(2), c = 21.8145(8) Å, β = 102.402(3)°, V = 1864.18(10) Å3, Z = 4, and Dcalc = 2.55 g cm–3. The six strongest reflections in the X-ray powder diffraction pattern are [dobs in Å (I) (hkl)]: 10.625 (100) (002), 6.277 (1) (11), 5.321 (66) (004), 3.549 (5) (006), 2.663 (4) (008), 2.131 (2) (0 0 10). The crystal structure has been refined from single-crystal X-ray diffraction data to R1 = 0.0224 for 5211 observed reflections with [I > 3σ(I)]. Leydetite possesses a sheet structure based upon the protasite anion topology. The sheet consists of UO7 bipyramids, which share four of their equatorial vertices with SO4 tetrahedra. Each SO4 tetrahedron, in turn, shares two of its vertices with UO7 bipyramids. The remaining unshared equatorial vertex of the bipyramid is occupied by H2O, which extends hydrogen bonds within the sheet to one of a free vertex of the SO4 tetrahedron. Sheets are stacked perpendicular to the c direction. In the interlayer, Fe2+ ions and H2O groups link to the sheets on either side via a network of hydrogen bonds. Leydetite is isostructural with the synthetic compound Mg(UO2)(SO4)2(H2O)11. The name of the new mineral honours Jean Claude Leydet (born 1961), an amateur mineralogist from Brest (France), who discovered the new mineral.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agilent Technologies (2012) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Alcock, N.W., Roberts, M.M. and Brown, D. (1982) Actinide structural studies. Part 3. The crystal and molecular structures of UO2SO4·H2SO4·5H2O and 2NpO2SO4·H2SO4·4H2O. Journal of the Chemical Society, Dalton Transactions, 869873.Google Scholar
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Bavoux, B. and Guiollard, P.-C. (1999) L’uranium du Lodévois (Hérault)L’uranium du Lodévois (Hérault). Saint-Pourcain, Sioule.Google Scholar
Boisson, J.-M. and Leydet, J.-C. (1998a) L’uranium et ses descendants. La Radioactivité . Le Régne Minéral, hors série IV, 1336.Google Scholar
Boisson, J.-M. and Leydet, J.-C. (1998b) Les minéraux uranifères français. La Radioactivité. Le Régne Minéral, hors série IV, 3760.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130. in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York, USA.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, UK.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247. with updated parameters from http://www.ccp14.ac.uk/ccp/ web-mirrors/i_d_brown/.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622. in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R. Finch, editors). Reviews in Mineralogy, 38, Mineralogical Society of America, Washington DC.Google Scholar
Čejka, J. (2004) Vibrational spectroscopy of uranyl minerals – infrared and Raman spectra of uranyl minerals. I. Uranyl, UO2 2+. Bulletin mineralogickopetrologického Oddělení Národního Muzea (Praha), 12, 4451. (in Czech).Google Scholar
Čejka, J. (2007) Vibrational spectra of uranyl minerals – infrared and Raman spectra of uranyl minerals. III. Uranyl sulphates. Bulletin mineralogicko-petrologického Oddělení Národního Muzea (Praha), 14–15. 4046. (in Czech).Google Scholar
Cheary, R.W. and Coelho, A.A. (1997) XFIT and FOURYA. CCP14 Powder Diffraction Library, Engineering and Physical Sciences Research Council, Daresbury Laboratory, Warrington, UK (http://www.ccp14.ac.uk/tutorial/xfit-95/xfit.htm).Google Scholar
Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallographica, A51, 887897.CrossRefGoogle Scholar
Deliens, M., Henriot, O., Mathis, V. and Caubel, A. (1990) Minéraux des gisements d’uranium du Lodévois. Association françaised e Microminéralogie, Paris.Google Scholar
Henriot, O. and Leydet, J.-C. (1998) Le gisement de Mas d’Alary Village, Hérault, France. Le cahier des Micromonteurs, 2, 1326.Google Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Lancelot, J., Briqueu, L., Respaut, J.-P. and Clauer, N. (1995) Géochimie isotopique des systèmes U-Pb/ Pb-Pb et évolution polyphasée des gîtes d’uranium du Lodévois et du sud du Massif central. Chronique de la Recherche Minière, 521, 318.Google Scholar
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulphate and sulphate-bearing minerals. American Mineralogist, 92, 118.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2003) CELREF: Unit Cell Refinement Program from Powder Diffraction Diagram. Laboratoires des Matériaux et du Génie Physique, Ecole Nationale Supérieure de Physique de Grenoble (INPG), Grenoble, France.Google Scholar
Leydet, J.-C. (2006) Shinkolobwe, République Démocratique du Congo-cahier spécial: minéraux dédiés à des minéralogistes français ou à des localités françaises. Le cahier des Micromonteurs, 10, 8688.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Ling, J., Sigmon, G.E., Ward, M., Roback, N. and Burns, P.C. (2010) Syntheses, structures, and IR spectroscopic characterization of new uranyl sulphate/ selenate 1D-chain, 2D-sheet and 3D-framework. Zeitschrift für Kristallographie, 225, 230239.Google Scholar
Majzlan, J., Alpers, C.N., Koch, C.B., McCleskey, R.B., Myneni, S.C.B. and Neil, J.M. (2011) Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 284, 296305.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. J. Wiley and Sons, New York.Google Scholar
Niinistö, L., Toivonen, J. and Valkonen, J. (1979) Uranyl (VI) compounds. II. The crystal structure of potassiumur any lsulphated i hydrate K2UO2(SO4)2·2H2O. Acta Chemica Scandinavica, A33, 621624.CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Prague, Czech Republic.Google Scholar
Plášil, J., Hauser, J., Petříček, V., Meisser, N., Mills, S.J., Škoda, R., Fejfarová, K., Čejka, J., Sejkora, J., Hloušek, J., Johannet, J.-M., Machovič, V. and Lapčák. L. (2012a) Crystal structure and formula revision of deliensi t e , Fe[(UO2 ) 2(SO4 ) 2 (OH)2](H2O)7 . Mineralogical Magazine, 76, 28372860.CrossRefGoogle Scholar
Plášil, J., Hloušek, J., Veselovský, F., Fejfarová, K., Dušek, M., Škoda, R., Novák, M., Čejka, J., Sejkora, J. and Ondruš, P. (2012b) Adolfpateraite, K(UO2)(SO4)(OH)(H2O), a new uranyl sulphate mineral from Jáchymov, Czech Republic. American Mineralogist, 97, 447454.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (j rZ) procedure for improved quantitative microanalysis. Pp. 104106. in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. The Canadian Mineralogist, 46, 467501.CrossRefGoogle Scholar
Serezhkin, V.N., Soldatkina, M.A. and Efremov, V.A. (1981) Crystal structure of Mg(UO2)(SO4)2·11H2O. Journal of Structural Chemistry, 22, 454457.CrossRefGoogle Scholar
Vochten, R., Blaton, N. and Peeters, O. (1997) Deliensite, Fe(UO2)2(SO4)2(OH)2·3H2O, a new ferrous uranyl sulphate hydroxy hydrate from Mas d’Alary, Lodève, Hérault, France. The Canadian Mineralogist, 35, 10211025.Google Scholar
Volod’ko, L.V., Komyak, A.I. and Sleptsov, L.I. (1965) Infrared absorption spectrum of the sodium uranyl acetate single crystal. Zhurnal Prikladnoi Spektroskopii, 3, 6571.Google Scholar
Volod’ko, L.V., Komyak, A.I. and Umreyko, D.S. (1981) Uranyl Compounds, Spectra and Structure, vol. 1. Izdatelsvo BGU Minsk (in Russian).Google Scholar