Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:30:48.089Z Has data issue: false hasContentIssue false

Lead-antimony sulfosalts from Tuscany (Italy). XVIII. New data on the crystal-chemistry of boscardinite

Published online by Cambridge University Press:  02 January 2018

Cristian Biagioni*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
Yves Moëlo
Affiliation:
Institut des Matériaux Jean Rouxel, UMR 6502, CNRS, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 3, France
*

Abstract

Boscardinite, ideally TlPb4(Sb7As2)∑9S18, has been described recently as a new homeotypic derivative of baumhauerite, found at Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. New findings of boscardinite in different mineral associations of this deposit have allowed the collection of new crystal-chemical data. Electron-microprobe analysis of the crystal used for the single-crystal X-ray diffraction study gave (in wt.%): Ag 1.81(5), Tl 12.60(21), Pb 17.99(12), Hg 0.14(5), As 9.36(12), Sb 33.60(27), S 23.41(30),Cl 0.06(1), total 98.97(100). On the basis of ∑Me = 14 apfu, it corresponds to Ag0.42Tl1.52Pb2.14Hg0.02 (Sb6.82As3.08)∑9.90S18.04Cl0.04. With respect to the type specimen, these new findings are characterized by a strong Pb depletion, coupled with higher Tl contents, and a significant As enrichment. The single-crystal X-ray diffraction study of this (Tl,As)-enriched boscardinite confirms the structural features described for the type sample. The unit-cell parameters are a = 8.1017(4), b = 8.6597(4), c = 22.5574(10) Å, α = 90.666(2), β = 97.242(2), γ = 90.850(2)°, V = 1569.63(12) Å3, space group 1. The crystal structure was refined down to R1 = 0.0285 on the basis of 6582 reflections with Fo > 4σ(Fo). Arsenic is dominant in three MeS3 sites, compared to one in type boscardinite. The main As-enrichment is observed in the sartorite-type sub-layer. Owing to this chemical peculiarity, (Tl, As)-rich boscardinite shows alternation, along b, of Sb-rich sites and As-rich sites; this feature represents the main factor controlling the 8 Å superstructure. The chemical variability of boscardinite is discussed; the Ag increase observed here gets closer to stoichiometric AgTl3Pb4(Sb14As6)∑20S36 (Z = 1), against possible extension up to AgTl2Pb6(Sb15As4)∑19S36 for type boscardinite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlepsch, P., Armbruster, T. and Topa, D. (2002) Structural and chemical variations in rathite, Pb8Pb4_x(Tl2As2)x(Ag2As2)As16S40: modulations of a parent structure. Zeitschriftfür Mineralogie, 217, 581590.Google Scholar
Berlepsch, P., Armbruster, T., Makovicky, E. and Topa, D. (2003) Another step toward understanding the true nature of sartorite: determination and refinement of a ninefold superstructure. American Mineralogist, 88, 450–61.CrossRefGoogle Scholar
Biagioni, C., D'Orazio, M., Vezzoni, S., Dini, A. and Orlandi, P. (2013) Mobilization of Tl-Hg-As-Sb-(Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology, 41, 747751.CrossRefGoogle Scholar
Biagioni, C., Bonaccorsi, E., Moëlo, Y., Orlandi, P., Bindi, L., D'Orazio, M. and Vezzoni, S. (2014a) Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: occurrence, crystal structure and crystal chemistry of the routhierite isotypic series. MineralogicalMagazine, 78, 101117.Google Scholar
Biagioni, C., Moëlo, Y and Orlandi, P. (2014b) Lead-antimony sulfosalts from Tuscany (Italy). XV (Tl-Ag)-bearing rouxelite from Monte Arsiccio mine: occurrence and crystal structure. Mineralogical Magazine, 78, 651661.CrossRefGoogle Scholar
Biagioni, C., Orlandi, P., Moëlo, Y and Bindi, L. (2014c) Lead-antimony sulfosalts from Tuscany (Italy). XVI. Carducciite, (AgSb)Pb6(As,Sb)8S20, a new Sb-rich derivative of rathite from the Pollone mine, Valdicastello Carducci: occurrence and crystal structure. Mineralogical Magazine, 78, 17751793.CrossRefGoogle Scholar
Biagioni, C., Moëlo, Y., Favreau, G., Bourgoin, V and Boulliard, J.-C. (2015) Structure of Pb-rich chabournéite from Jas Roux, France. Acta Crystallographica, B71, 8188.Google Scholar
Bindi, L., Nestola, F., Makovicky, E., Guastoni, A. and De Battisti, L. (2014) Tl-bearing sulfosalt from the Lengenbach quarry, Binn Valley, Switzerland: Philrothite, TlAs3S5 . MineralogicalMagazine, 78, 19.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Bruker AXS Inc. (2004) APEX2. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
Hålenius, U., Hatert, F., Pasero, M. and Mills, S.J. (2015) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 25. Mineralogical Magazine, 79, 529535.CrossRefGoogle Scholar
Jambor, J.L. (1967a) New lead sulfantimonides from Madoc, Ontario - Part 1. The Canadian Mineralogist, 9, 724.Google Scholar
Jambor, J.L. (1967b) New lead sulfantimonides from Madoc, Ontario. Part 2 — Mineral descriptions. The Canadian Mineralogist, 9, 191213.Google Scholar
Johan, Z., Mantienne, J. and Picot, P. (1981) La chabournéite, un nouveau minéral thallifere. Bulletin de Minéralogie, 104, 1015.CrossRefGoogle Scholar
Laroussi, A., Moëlo, Y., Ohnenstetter, D. and Ginderow, D. (1989) Argent et thallium dans les sulfosels de la série de la sartorite (gisement de Lengenbach, vallée de Binn, Suisse). Comptes Rendus de l’Académie des Sciences Paris, 308, 927933.Google Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschritte der Mineralogie, 63, 4589.Google Scholar
Makovicky, E. (1997) Modular crystal chemistry of sulphosalts and other complex sulphides. Pp. 237271 in: Modular Aspects of Minerals (S. Merlino, editor). European Mineralogical Union, Notes in Mineralogy, 1. Eötvös University Press, Budapest.Google Scholar
Makovicky, E. and Topa, D. (2012) Twinnite, Pb0.8Tl0.1Sb1.3As0.8S4, the OD character and the question of its polytypism. Zeitschrift für Kristallographie, 227, 468–75.Google Scholar
Makovicky, E. and Topa, D. (2013) The crystal structure of barikaite. Mineralogical Magazine, 77, 30933104.CrossRefGoogle Scholar
Makovicky, E. and Topa, D. (2015) Crystal chemical formula for sartorite homologues. Mineralogical Magazine, 79, 2531.CrossRefGoogle Scholar
Makovicky, E., Topa, D., Taijedin, H., Rastad, E. and Yaghubpur, A. (2012) The crystal structure of guettardite, PbAsSbS4, and the twinnite-guettardite problem. The Canadian Mineralogist, 50, 253265.CrossRefGoogle Scholar
Mantienne, J. (1974) La minéralisation thallifere de Jas Roux (Hautes-Alpes). Unpublished thesis, Université de Paris, 146 pp.Google Scholar
Moëlo, Y., Guillot-Deudon, C., Evain, M., Orlandi, P. and Biagioni, C. (2012) Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag, Cu)3Pb19(Sb,As)22(As—As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58 . Acta Crystallographica, B68, 480492.CrossRefGoogle Scholar
Nestola, F., Guastoni, A., Bindi, L. and Secco, L. (2009) Dalnegroite, Tl5xPb2x(As,Sb)21xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Switzerland. Mineralogical Magazine, 73, 10271032.CrossRefGoogle Scholar
Nickel, E.H. (1992) Nomenclature for mineral solid solutions. American Mineralogist, 77, 660662.Google Scholar
Orlandi, P., Moëlo, Y., Meerschaut, A., Palvadeau, P. and Léone, P. (2005) Lead-antimony sulfosalts from Tuscany (Italy). VIII. Rouxelite, Cu2HgPb22Sb28S64(O,S)2, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. The Canadian Mineralogist, 43, 919933.CrossRefGoogle Scholar
Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y and Paar, W. (2012) Lead-antimony sulfosalts from Tuscany (Italy). XII. Boscardinite, TlPb4(Sb7As2)Σ9S18, a new mineral species from the Monte Arsiccio mine: occurrence and crystal structure. The Canadian Mineralogist, 50, 235251.CrossRefGoogle Scholar
Orlandi, P., Biagioni, C., Moëlo, Y., Bonaccorsi, E. and Paar, W. (2013) Lead-antimony sulfosalts from Tuscany (Italy). XIII. Protochabournéite, ∼Tl2Pb (Sb9_8Asj_2)zl0S17, from the Monte Arsiccio mine: occurrence, crystal structure and relationship with chabournéite. The Canadian Mineralogist, 51, 475–94.CrossRefGoogle Scholar
Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y and Paar, W.H. (2014) Bernarlottiite, IMA 2013-133. CNMNC Newsletter No. 20, June 2014, page 553. Mineralogical Magazine, 78, 549558.Google Scholar
Pring, A. and Graeser, S. (1994) Polytypism in baum-hauerite. American Mineralogist, 79, 302307.Google Scholar
Pring, A., Birch, W.D., Sewell, D., Graeser, S., Edenharter, A. and Criddle, A. (1990) Baumhauerite-2a: A silver-bearing mineral with a baumhauerite-like supercell from Lengenbach, Switzerland. American Mineralogist, 75, 915922.Google Scholar
Sawada, H., Kawada, I., Hellner, E. and Tokonami, M. (1987) The crystal structure of senandorite (andorite VI): PbAgSb3S6 . Zeitschrift für Kristallographie, 180, 141150.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Shimizu, M., Matsuyama, F. and Shimizu, M. (1999) Hutchinsonite, TlPb(As,Sb)5S9, Chabournéite, Tl2Pb (Sb,As)10S17, and Unnamed (Tl,Ag)2Pb6(As,Sb)16S31from the Toya-Takarada Mine, Hokkaido, Japan - Tl mineralisation in the Kuroko Deposits. Resource Geology, 20, 3137.Google Scholar
Topa, D., Makovicky, E., Favreau, G., Bourgoin, V., Boulliard, J.-C., Zagler, G. and Putz, H. (2013) Jasrouxite, a new Pb-Ag-As-Sb member of the lillianite homologous series from Jas Roux, Hautes-Alpes, France. European Journal of Mineralogy, 25, 10311038.CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for Crystallography Volume C. Kluwer, Dordrecht, The Netherlands.Google Scholar