Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T16:24:08.864Z Has data issue: false hasContentIssue false

Lead in diagenetic pyrite: evidence for Pb-tolerant bacteria in a red-bed Cu deposit, Quebec Appalachians, Canada

Published online by Cambridge University Press:  05 July 2018

A. R. Cabral*
Affiliation:
Department of Geology: Exploration Geology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
G. Beaudoin
Affiliation:
Département de géologie et de génie géologique, Université Laval, Québec, QC, G1K 7P4, Canada
F. Munnik
Affiliation:
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
*

Abstract

Diagenetic pyrite from the Silurian continental red bed-hosted Transfiguration cupriferous deposit in the Quebec Appalachians, Gaspe Belt, Canada, contains up to ∼2% (m/m) Pb. This large Pb content in pyrite contrasts with experimental determinations that indicate solubility of <0.1% (m/m) PbS in pyrite at high temperature. The distribution of Pb in pyrite is heterogeneous, with plumbiferous domains occurring as patches and concentric growth layers alternating with Mn- and Mo-bearing zones. The plumbiferous pyrite is surrounded by As- and Cu-rich rims. This compositional heterogeneity, however, is elusive under normal backscattered-electron (BSE) imaging, but it can be recognized under high-gain BSE. Proton-induced X-ray emission (PIXE) confirms the presence of Pb. Plumbiferous pyrite with >0.1% (m/m) Pb has rarely been described; it is thus possible that plumbiferous pyrite may have been overlooked in metalliferous deposits worldwide. The plumbiferous pyrite from Transfiguration has a light S-isotope composition that is characteristic of bacterial sulphate reduction. We suggest that Pb in diagenetic pyrite indicates Pb-tolerant bacterial activity and, perhaps, constitutes a biosignature of bacterial tolerance to Pb in ancient sedimentary systems.

Type
CNMNC Newsletter 8
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Mineral Deposits, Technische Universität Clausthal, Adolph-Roemer-Str. 2a, D-38678, Clausthal-Zellerfeld, Germany

References

Anbar, A.D. and Knoll, A.H. (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science, 297, 1137-1142.CrossRefGoogle ScholarPubMed
Baker, T., Mustard, R., Brown, V., Pearson, N., Stanley, C.R., Radford, N.W. and Butler, I. (2006) Textural and chemical zonation of pyrite at Pajingo: a potential vector to epithermal gold veins. Geochemistry: Exploration, Environment, Analysis, 6, 283-293.Google Scholar
Belcher, R.W., Rozendaal, A. and Przybylowicz, W.J. (2004) Trace element zoningin pyrite determined by PIXE elemental mapping: evidence for varying orefluid composition and electrochemical precipitation of gold. X-Ray Spectrometry, 33, 174-180.CrossRefGoogle Scholar
Berner, R.A. (1984) Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48, 605-615.CrossRefGoogle Scholar
Brett, R. and Kullerud, G. (1967) The Fe–Pb–S system. Economic Geology, 62, 354-369.CrossRefGoogle Scholar
Cabral, A.R., Beaudoin, G. and Taylor, B.E. (2009) The Transfiguration continental red-bed Cu–Pb–Zn–Ag deposit, Quebec Appalachians, Canada. Mineralium Deposita, 44, 285-301.CrossRefGoogle Scholar
Campbell, J.L., Hopman, T.L., Maxwell, J.A. and Nejedly, Z. (2000) The Guelph PIXE software package III: Alternative proton database. Nuclear Instruments and Methods in Physics Research B, 170, 193-204.CrossRefGoogle Scholar
Capone, D.G., Reese, D.D. and Kiene, R.P. (1983) Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments. Applied and Environmental Microbiology, 45, 1586-1591.CrossRefGoogle ScholarPubMed
Cook, N.J., Ciobanu, C.L. and Mao, J. (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chemical Geology, 264, 101-121.CrossRefGoogle Scholar
Craig, J.R. and Vaughan, D.J. (1979) Cobalt-bearing sulfide assemblages from the Shinkolobwe deposit, Katanga, Zaire. American Mineralogist, 64, 136-139.Google Scholar
Craig, J.R. and Vaughan, D.J. (1990) Compositional and textural variations of the major iron and base-metal sulphide minerals. Pp. 1-16 in: Sulphide Deposits: Their Origin and Processing (Gray, P.M.J. et al., editors). The Institution of Miningand Metallurgy, London.Google Scholar
Craig, J.R., Vokes, F.M. and Solberg, T.N. (1998) Pyrite: physical and chemical textures. Mineralium Deposita, 34, 82-101.CrossRefGoogle Scholar
Fallick, A.E., Ashton, J.H., Boyce, A.J., Ellam, R.M. and Russell, M.J. (2001) Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulfide orebody at Navan, Ireland. Economic Geology, 96, 885-890.Google Scholar
Fleet, M.E. and Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182-193.CrossRefGoogle Scholar
Fleet, M.E., Chryssoulis, S.L., MacLean, P.J., Davidson, R. and Weisener, C.G. (1993) Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color stainingand surface oxidation by XPS and LIMS. The Canadian Mineralogist, 31, 1-17.Google Scholar
Fralick, P.W., Barrett, T.J., Jarvis, K.E., Jarvis, I., Schnieders, B.R. and Kemp, R.V. (1989) Sulfidefacies iron formation at the Archean Morley occurrence, northwestern Ontario: contrasts with oceanic hydrothermal deposits. The Canadian Mineralogist, 27, 601-616.Google Scholar
Griffin, W.L., Ashley, P.M., Ryan, C.G., Sie, S.H. and Suter, G.F. (1991) Pyrite geochemistry in the North Arm epithermal Ag–Au deposit, Queensland, Australia: a proton-microprobe study. The Canadian Mineralogist, 29, 185-198.Google Scholar
Harithsa, S., Kerkar, S. and Loka Bharathi, P.A. (2002) Mercury and lead tolerance in hypersaline sulfatereducingbacteria. Marine Pollution Bulletin, 44, 726-732.CrossRefGoogle Scholar
Herrmann, F. and Grambole, D. (1995) The new Rossendorf nuclear microprobe. Nuclear Instruments and Methods in Physics Research B, 104, 26-30.CrossRefGoogle Scholar
Huerta-Diaz, M.A. and Morse, J.W. (1992) Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 268l–2702.CrossRefGoogle Scholar
Hupé, A. (2001) Campagne de Forages 2000, Propriété Transfiguration, Secteur Bédard. Unpublished report, Ressources Appalaches.Google Scholar
Koglin, N., Frimmel, H.E., Minter, W.E.L. and Brätz, H. (2010) Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 45, 259-280.CrossRefGoogle Scholar
Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B. and Foster, J. (2009) Gold and trace element zonation in pyrite usinga laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104, 635-668.CrossRefGoogle Scholar
Liermann, L.J., Hausrath, E.M., Anbar, A.D. and Brantley, S.L. (2007) Assimilatory and dissimilatory processes of microorganisms affecting metals in the environment. Journal of Analytical Atomic Spectrometry, 22, 867-877.CrossRefGoogle Scholar
Loka Bharathi, P.A., Sathe, V. and Chandramohan, D. (1990) Effect of lead, mercury and cadmium on a sulphate-reducingbacter ium. Environmental Pollution, 67, 361-374.CrossRefGoogle Scholar
Marowsky, G. (1969) Schwefel-, Kohlenstoff- und Sauerstoff - Isotopenuntersuchungen am Kupferschiefer als Beitragz ur genetischen Deutung. Contributions to Mineralogy and Petrology, 22, 290-334.CrossRefGoogle Scholar
Maslennikov, V.V., Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V. (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (southern Urals, Russia) usinglaser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Economic Geology, 104, 1111-1141.CrossRefGoogle Scholar
Massadeh, A.M., Al-Momani, F.A. and Haddad, H.I. (2005) Removal of lead and cadmium by halophilic bacteria isolated from the Dead Sea shore, Jordan. Biological Trace Element Research, 108, 259-270.CrossRefGoogle ScholarPubMed
Meffre, S., Large, R.R., Scott, R., Woodhead, J., Chang, Z., Gilbert, S.E., Danyushevsky, L.V., Maslennikov, V. and Hergt, J. M. (2008) Age and pyrite Pbisotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochimica et Cosmochimica Acta, 72, 2377-2391.CrossRefGoogle Scholar
Morse, J.W. and Luther III, G.W. (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3373-3378.CrossRefGoogle Scholar
Ohmoto, H. and Felder, R.P. (1987) Bacterial activity in the warmer, sulphate-bearing, Archaean oceans. Nature, 328, 244-246.CrossRefGoogle Scholar
Orberger, B., Pašava, J., Gallien, J.P., Daudin, L. and Trocellier, P. (2003) Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from black shales (Selwyn Basin, Yukon Territories, Canada): a nuclear microprobe study. Nuclear Instruments and Methods in Physics Research B, 210, 441-448.CrossRefGoogle Scholar
Orberger, B., Gallien, J.P., Pinti, D.L., Fialin, M., Daudin, L., Gröcke, D.R. and Pašava, J. (2005) Nitrogen and carbon partitioning in diagenetic and hydrothermal minerals from Paleozoic black shales (Selwyn Basin, Yukon Territories, Canada). Chemical Geology, 218, 249-264.CrossRefGoogle Scholar
Palenik, C.S., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L. and Ewing, R.C. (2004) Invisible gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89, 1359-1366.CrossRefGoogle Scholar
Pals, D.W., Spry, P.G. and Chryssoulis, S. (2003) Invisible gold and tellurium in arsenic-rich pyrite from the Emperor gold deposit, Fiji: implications for gold distribution and deposition. Economic Geology, 98, 479-493.Google Scholar
Ramdohr, P. (1950) Die Erzmineralien und ihre Verwachsungen. Akademie Verlag, Berlin.Google Scholar
Reed, S.J.B. (1996) Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, Cambridge, UK.Google Scholar
Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R.C. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796.CrossRefGoogle Scholar
Reimold, W.U., Przybylowicz, W.J. and Gibson, R.L. (2004) Quantitative major and trace elemental mappingby PIXE of concretionary pyrite from the Witwatersrand Basin, South Africa. X-Ray Spectrometry, 33, 189-203.CrossRefGoogle Scholar
Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S.E., Berry, R.F. and Emsbo, P. (2009) Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104, 1143-1168.CrossRefGoogle Scholar
Simon, G., Kesler, S.E. and Chryssoulis, S. (1999) Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in Carlin-type deposits. Economic Geology, 94, 405-422.CrossRefGoogle Scholar
Tauson, V.L. and Akimov, V.V. (1991) Effect of crystallite size on solid state miscibility: applications to the pyrite–cattierite system. Geochimica et Cosmochimica Acta, 55, 2851-2859.CrossRefGoogle Scholar
Tauson, V.L. and Akimov, V.V. (1993) Further experimental evidence for a crystallite size effect in the FeS2–CoS2 system. Chemical Geology, 109, 113-118.CrossRefGoogle Scholar
Tauson, V.L., Babkin, D.N., Parkhomenko, I.Yu., Men’shikov, V.I., Lipko, S.V. and Pastushkova, T.M. (2010) Distribution of heavy-metal (Hg, Cd, and Pb) chemical species between pyrite and hydrothermal solution. Geochemistry International, 48, 611-616.CrossRefGoogle Scholar
Thomas, H.V., Large, R.R., Bull, S.W., Maslennikov, V., Berry, R.F., Fraser, R., Froud, S. and Moye, R. (2011) Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: insights for ore genesis. Economic Geology, 106, 1-31.CrossRefGoogle Scholar
Tompkins, L.A., Groves, D.I., Windrim, D.P., Jablonski, W. and Griffin, W.L. (1997) Petrology, mineral chemistry, and exploration significance of Fesulfides from the metal dispersion halo surrounding the Cadjebut Zn–Pb MVT deposit, Western Australia. Applied Geochemistry, 12, 37-54.CrossRefGoogle Scholar