Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T11:39:03.278Z Has data issue: false hasContentIssue false

Kusachiite, CuBi2O4, a new mineral from Fuka, Okayama Prefecture, Japan

Published online by Cambridge University Press:  05 July 2018

Chiyoko Henmi*
Affiliation:
Department of Earth Sciences, Faculty of Science, Okayama University, Okayama 700, Japan

Abstract

Kusachiite, CuBi2O4, has been found in a calcite vein cutting gehlenite-spurrite skarns at Fuka, Okayama Prefecture. It is associated with calcite, henmilite, sillenite, bakerite, tenolite, bultfonteinite, apophyllite, cuspidine and thaumasite. Kusachiite occurs as prismatic crystals or globular aggregates of platy crystals. It is black, opaque with a metallic lustre. Kusachiite is tetragonal with space group P4/ncc, a = 8.511(2), c = 5.823(2) Å, Z = 4. The strongest lines in the X-ray powder pattern [d in Å (I)(hkl)] are 3.191 (100)(211), 2.695 (18)(310), 1.947 (18)(411), 4.26 (17)(200), 2.913 (16)(002), 2.404 (13)(202), 1.728 (12)(213), and 1.652 (9)(332). The Mohs hardness is 4.5, and the density is 8.5(3) g/cm3 (meas.) and 8.64 g/cm3 (calc.). Cleavage is perfect on {110}. Six electron probe analyses gave the following mean values CuO 13.91, Bi2O3 86.00 and total 99.91 in wt.%. The empirical formula calculated on the basis of O = 4 is Cu0.960Bi2.027O4 with the simplified formula CuBi2O4.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, S.C., Bernstein, J.L. and Svensson, C. (1979) Crystal structure and absolute piezoelectric coefficient in laevorotatory Bii2Si02o. J-Chem. Phys., 71(2), 788-92.CrossRefGoogle Scholar
Arjomand, M. and Machin, D.J. (1975) Oxide chemistry. Part II. Thernary oxides containing copper in oxidation states-I,-II,-III, and IV. J. Chem. Soc. Dalton Trans., 11, 1061–6.CrossRefGoogle Scholar
Arpe, von R. and Miiller-Buschbaum, H.K. (1976) Isolierte quadratisch planare Cu4∼-Polyeder in CuBi2O4, ein neuer Bautyp zur Formel Me2 +M2+O4. Z. anorg. allg. Chem., 426, 1–6.CrossRefGoogle Scholar
Batog, V.N., Pakhomov, V.I., Safronov, G.M. and Fedorov, P.M. (1973) Nature of phases with the y-Bi2O3 structure (sillenite phase). Izvest. Akad. Nauk SSR, Neorg. Mater, 9, 1576–80.Google Scholar
Boivin, J.-C, Thomas, D. and Tridot, G. (1973) Determination des phases solides du systeme oxyde de bismuth-oxyde de cuivre: Domaines de stabilite et 6tude radio-crystallographique. C. R. Acad. Sci. Paris, C116, 1105-7.Google Scholar
Boivin, J.-C, Trehoux, J. and Thomas, D. (1976) Etude structurale de CuBi2O4 . Bull. Soc. fr. Mineral. Crystallogr., 99, 193–6.Google Scholar
Bridge, P.J. and Pryce, M.W. (1974) Clinobisvanite, monoclinic BiVO4, a new mineral from Yinniethar-ra, Western Australia. Mineral. Mag., 39, 847–9.CrossRefGoogle Scholar
Craig, D.C. and Stephenson, N.C. (1975) Structural studies of some body-centred cubic phases of mixed oxides involving Bi2O3: The structures of Bi25Fe04o and Bi38ZnO6(,. J. Solid State Chem., 15, 1–8.CrossRefGoogle Scholar
Garcia-Munoz, J.L., Rodriguez-Carvajal, J., Sapina, F., Sanchis, M.J., Ibanez, R. and Beltran-Porter, D. (1990) Crystal and magnetic structures of bismuth copper oxide (Bi2Cu04). J. Phys. Condens. Matter, 2, 2205–14.CrossRefGoogle Scholar
Horowitz, H.S., Jacobson, A.J., Newsam, J.M., Lewan-dowski, J.T. and Leonowicz, M.E. (1989) Solution synthesis and characterization of sillenite phases Bi24A/2O40 (M = Si, Ge, V, As, P). Solid State Ionics, 32/33, 678-90.Google Scholar
Kakhan, B.G., Lazarev, V.B. and Shaplygin, I.S. (1979) Subsolidus part of the equilibrium diagrams of the Bi2O3-MO binary systems (M = Ni, Cu, or Pd). Russ. J. Inorg. Chem., 24, 922–5.Google Scholar
Konstantinovic, J., Stanisic, G., Ain, M. and Parette, G. (1991) On the magnetic structure of bismuth copper oxide (Bi2CuO4). J. Phys. Condens. Matter, 3, 381–4.CrossRefGoogle Scholar
Kusachi, I. (1992) New data on mineralogical properties of henmilite. J. Mineral. Soc. Japan, 21, 127–30 (in Japanese). Kusachi, I. and Henmi, C. (1991) Sillenite from Fuka, Okayama Prefecture, Japan. Mineral. J., 15, 343–8.Google Scholar
Mellini, M., Amouric, M., Baronnet, A. and Mercuriot, G. (1981) Microstructures and nonstoichiometry in shafarzikite-like minerals. Amer. Mineral., 66, 1073–9.Google Scholar
Murray, A.D., Catlow, C.R.A., Beech, F. and Drennan, J. (1986) A neutron powder diffraction study of the low-and high-temperature structures of Bi12PbOi). J. Solid State Chem., 62, 290–6.CrossRefGoogle Scholar
Nakai, I., Okada, H., Masutomi, K., Koyama, E. and Nagashima, K. (1986) Henmilite, Ca2Cu(OH)4[-B(OH)4]2, a new mineral from Fuka, Okayama Prefecture, Japan. Amer. Mineral., 71, 1234–9.Google Scholar
Pertlik, von F. (1977) Zur Synthese von Kristallen von CuAs2O4 (Trippkeit) und Cu2As3O6CH3COO (Eine Komponente des Farbpigments “Schweinfurter Griin“). Z. anorg. allg. Chem., 436, 201–6.CrossRefGoogle Scholar
Ramanan, A. and Gopalakrishnan, J. (1985) Low-temperature preparation of sillenite phases in Bi-M-0 (M = Mn, Fe, Co) systems. Indian J. Chem., 24A, 594–6.Google Scholar
Yamada, K., Takada, K., Hosoya, S., Watanabe, Y., Endoh, Y., Tomonaga, N., Suzuki, T., Ishigaki, T., Kamiyama, T., Asano, H. and Izumi, F. (1991) Three-dimensional antiferromagnetic order and anisotropic magnetic properties in Bi2Cu04. J. Phys. Soc. Japan, 60, 2406–14.CrossRefGoogle Scholar