Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T19:56:35.510Z Has data issue: false hasContentIssue false

Kerimasite, Ca3Zr2(Fe23+Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania

Published online by Cambridge University Press:  05 July 2018

A. N. Zaitsev*
Affiliation:
Department of Mineralogy, Faculty of Geology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
C. T. Williams
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
S. N. Britvin
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
I. V. Kuznetsova
Affiliation:
St. Petersburg University of Technology and Design, Bolshaya Morskaya ul. 18, St. Petersburg 191186, Russia
J. Spratt
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
S. V. Petrov
Affiliation:
Department of Mineral Deposits, Faculty of Geology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
J. Keller
Affiliation:
Institut für Geowissenschaften, Mineralogie-Geochemie, Universität Freiburg, Albertstrasse 23b, 79104 Freiburg, Germany
*

Abstract

Kerimasite, ideally is a new calcium zirconium silicate-ferrite member of the garnet group from the extinct nephelinitic volcano Kerimasi and surrounding explosion craters in northern Tanzania. The mineral occurs as subhedral crystals up to 100 μm in size in calcite carbonatites, and as euhedral to subhedral crystals up to 180 μm in size in carbonatite eluvium. Kerimasite is light to dark-brown in colour and transparent with a vitreous lustre. No cleavage or parting was observed and the mineral is brittle. The calculated density is 4.105(1) g/cm3. The micro-indentation, VHN25, ranges from 1168 to 1288 kg/mm2. Kerimasite is isotropic with n = 1.945(5). The average chemical formula of the mineral derived from electron microprobe analyses (sample K 94-25) and calculated for O = 12 and all Fe as Fe2O3 is (Ca3.00Mn0.01Ce0.01Nd0.01)Σ3.03(Zr1.72Nb0.14Ti0.08Mg0.02Y0.02)Σ1.98(Ti0.09)Σ3.00O12. The largest Fe content determined in kerimasite is 21.6 wt.% Fe2O3 and this value corresponds to 1.66 a.p.f.u. in the tetrahedral site. Kerimasite is cubic, space group with a = 12.549(1) Å, V = 1976.2(4) Å3 and Z = 8. The five strongest powder-diffraction lines [d in Å, (I/Io), hkl] are: 4.441 (49) (220), 3.140 (91) (400), 2.808 (70) (420), 2.564 (93) (422) and 1.677 (100) (642). Single-crystal structure refinement revealed the typical structure of the garnet-group minerals. The name is given after the locality, Kerimasi volcano, Tanzania.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1995) Handbook of Mineralogy (Volume II – Silica, Silicates). Mineral Data Publishing, Tucson, Arizona, USA.Google Scholar
Arredondo, E.H. and Rossman, G.R. (2002) Feasibility of determining the quantitative OH content of garnets with Raman spectroscopy. American Mineralogist, 87, 307311.CrossRefGoogle Scholar
Bailey, D.K. (1993) Carbonate magmas. Journal of the Geological Society, 150, 637651.CrossRefGoogle Scholar
Borodin, L.S. and Bykova, A.V. (1963) Zirconian schorlomite. Transactions (Doklady) of the Russian Academy of Sciences /Earth Science Sections, 141, 13011302.Google Scholar
Brandenberger, E. (1933) Kristallstrukturelle Untersuchungen an Ca-Aluminathydraten. Schw eizeris che Min era logische und Petrographische Mitteilingen, 13, 569570.Google Scholar
Bulakh, A.G. (2009) Chemical substitution and choosing the mineral name. Zapiski (Proceedings) of the Russian Mineralogical Society 138(3), 108111 (in Russian).Google Scholar
Chakhmouradian, A.R. and McCammon, C.A. (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Physics and Chemistry of Minerals, 32, 277289.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola peninsula, Russia: mineralogy and a possible link to carbonatites. III. Silicate minerals. The Canadian Mineralogist, 40, 13471374.CrossRefGoogle Scholar
Church, A.A. (1995) The petrology of the Kerimasi carbonatite volcano and the carbonatites of Oldoinyo Lengai with a review of other occurrences of extrusive carbonatites. PhD thesis, University of London, London, 384 pp.Google Scholar
Dawson, J.B. (1962) The geology of Oldoinyo Lengai. Bulletin Volcanologique, 24, 348387.CrossRefGoogle Scholar
Dawson, J.B. (1964) Carbonatitic volcanic ashes in Northern Tanganyika. Bulletin Volcanologique, 27, 8192.CrossRefGoogle Scholar
Dawson, J.B. (2008) The Gregory rift valley and Neogene-recent volcanoes of northern Tanzania. Memoir of the Geological Society of London, 33, 102 pp.CrossRefGoogle Scholar
Dawson, J.B. and Hill, P.G. (1998) Mineral chemistry of a peralkaline combeite-lamprophyllite nephelinite from Oldoinyo Lengai, Tanzania. Mineralogical Magazine, 62, 179196.CrossRefGoogle Scholar
Dawson, J.B. and Powell, D.G. (1969) The Natron-Engaruka explosion crater area, Northern Tanzania. Bulletin Volcanologique, 33, 791817.CrossRefGoogle Scholar
Dawson, J.B. and Smith, J.V. (1988) Metasomatised and veined upper-mantle xenoliths from Pello Hill, Tanzania: evidence for anomalously-light mantle beneath the East African Rift Valley. Contributions to Mineralogy and Petrology, 100, 510527.CrossRefGoogle Scholar
Dawson, J.B., Smith, J.V. and Jones, A.P. (1985) A comparative study of bulk rock and mineral chemistry of olivine melilitites and associated rocks from East and South Africa. Neues Jahrbuch für Mineralogische Abhandlungen 152, 143175.Google Scholar
Dawson, J.B., Smith, J.V. and Steele, I.M. (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. Journal of Petrology, 36, 797826.CrossRefGoogle Scholar
Dawson, J.B., Steele, I.M., Smith, J.V. and Rivers, M.X. (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineralogical Magazine, 60, 415425.CrossRefGoogle Scholar
Dowty, E. (1971) Crystal chemistry of titanian and zirconian garnet: I. Review and spectral studies. American Mineralogist, 56, 19832009.Google Scholar
Galuskina, I.O., Galuskin, E.V., Szierzanowski, P., Armbruster, T. and Kozanecki, M. (2005) A natural scandian garnet. American Mineralogist, 90, 16881692.CrossRefGoogle Scholar
Geller, S., Miller, C.E. and Treuting, R.G. (1960) New synthetic garnets. Acta Crystallographica, 13, 179186.CrossRefGoogle Scholar
Hay, R.L. (1983) Natrocarbonatite tephra of Kerimasi volcano, Tanzania. Geology, 11, 599602.2.0.CO;2>CrossRefGoogle Scholar
Haynes, E.A., Moechera, D.P. and Spicuzza, M.J. (2003) Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites: constraints on crystallization temperatures of carbonatite magmas. Chemical Geology, 193, 4357.CrossRefGoogle Scholar
Henderson, P. (1982) Inorganic Geochemistry. Pergamon Press, Oxford, UK.Google Scholar
Henmi, C., Kusachi, I. and Henmi, K. (1996) Zirconium minerals and zirconian garnet from Fuka, Okayama Prefecture, Japan. Mineralogical Journal, 18, 5459.CrossRefGoogle Scholar
Ito, J. and Frondel, C. (1967) Synthetic zirconium and titanium garnets. American Mineralogist, 52, 773781.Google Scholar
Jamtveit, B., Dahlgren, S. and Austrheim, H. (1997) High-grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway. American Mineralogist, 82, 12411254.CrossRefGoogle Scholar
Johnson, L.H., Jones, A.P., Church, A.A. and Taylor, W.R. (1997) Ultramafic xenoliths and megacrysts from a melilitite tuff cone, Deeti, northern Tanzania. Journal of African Earth Sciences, 25, 2942.CrossRefGoogle Scholar
Katerinopoulou, A., Katerinopoulos, A., Voudouris, P., Bieniok, A., Musso, M. and Amthauer, G. (2009) A multi-analytical study of the crystal structure of unusual Ti-Zr-Cr-rich andradite from the Maronia skarn, Rhodope massif, western Thrace, Greece. Mineralogy and Petrology, 95, 113124.CrossRefGoogle Scholar
Keller, J. and Krafft, M. (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bulletin of Volcanology, 52, 629645.CrossRefGoogle Scholar
Keller, J. and Zaitsev, A.N. (2006) Calciocarbonatite dykes at Oldoinyo Lengai, Tanzania: the fate of natroearbonatite. The Canadian Mineralogist, 44, 857876.CrossRefGoogle Scholar
Keller, J., Zaitsev, A.N. and Wiedenmann, D. (2006) Primary magmas at Oldoinyo Lengai: The role of olivine melilitites. Lithos, 91, 150172.CrossRefGoogle Scholar
Lapin, A.V. (1979) Mineral parageneses of apatite ores and carbonatites of the Sebl'yavr Massif. International Geology Review, 21, 10431052.CrossRefGoogle Scholar
Ledger, E.B., Rowe, M.W. and Howard, J.M. (1988) Uranium contents of carbonatite minerals, Magnet Cove, Arkansas, U.S.A Chemical Geology, 69, 165169.CrossRefGoogle Scholar
Locock, A.J. (2008) An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers & Geosciences, 34, 17691780.CrossRefGoogle Scholar
Lupini, L., Williams, C.T. and Woolley, A.R. (1992) Zr-rich garnet and Zr-and Th-rich perovskite from the Polino carbonatite, Italy. Mineralogical Magazine, 56, 581586.CrossRefGoogle Scholar
Mariano, A.N. and Roeder, P.L. (1983) Kerimasi: a neglected carbonatite volcano. The Journal of Geology, 91, 449455.CrossRefGoogle Scholar
Mill, B.V., Zadneprovskii, G.M. and Bakakin, V.V. (1966) New compounds with garnet-type structure. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 2(10), 18611864 (in Russian).Google Scholar
Milton, C. and Blade, L.V. (1958) Preliminary note on kimzeyite, a new zirconium garnet. Science 127, 1343.CrossRefGoogle ScholarPubMed
Milton, C., Ingram, B.L. and Blade, L.V. (1961) Kimzeyite, a zirconium garnet from Magnet Cove, Arkansas. American Mineralogist 46, 533548.Google Scholar
Mitchell, R.H. (2005) Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist, 43, 20492068.CrossRefGoogle Scholar
Mitchell, R.H. (2006 a) An ephemeral pentasodium phosphate carbonate from natrocarbonatite lapilli, Oldoinyo Lengai, Tanzania. Mineralogical Magazine, 70, 211218.CrossRefGoogle Scholar
Mitchell, R.H. (2006 b) Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai, Tanzania. Mineralogical Magazine, 70, 437444.CrossRefGoogle Scholar
Munno, R., Rossi, G. and Tadini, C. (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. American Mineralogist, 65, 188191.Google Scholar
Nickel, E.H. (1957) A zirconium-bearing garnet from Oka, Quebec. The Canadian Mineralogist, 6, 549550.Google Scholar
O'Keeffe, M. and Brese, N.E. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Peterson, T.D. (1990) Petrology and genesis of natroearbonatite. Contributions to Mineralogy and Petrology, 105, 143155.CrossRefGoogle Scholar
Platt, R.G. and Mitchell, R.H. (1979) The Marathon dikes. I: Zirconium-rich titanian garnets and manganoan magnesian ulvöspinel-magnetite spinels. American Mineralogist 64, 546550.Google Scholar
Reguir, E.P., Chakhmouradian, A.R., Nalden, N.M., Yang, P. and Zaitsev, A.N. (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. The Canadian Mineralogist, 46, 879900.CrossRefGoogle Scholar
Rickwood, P.C. (1968) On recasting analyses of garnet into end-member molecules. Contributions to Mineralogy and Petrology, 18, 175198.CrossRefGoogle Scholar
Sarkisov, S.E. and Kaminskii, A.A. (1988) Optical phonon spectroscopy of heterovalent disordered Ca3(Nb,Ga)2Ga3O12 crystals with garnet structure. Physica Status Solidi (a), 107, 365371.CrossRefGoogle Scholar
Schingaro, E., Scordari, F., Capitanio, F., Parodi, G., Smith, D.C. and Mottana, A. (2001) Crystal chemistry of kimzeyite from Anguillara, Mt Sabatini, Italy. European Journal of Mineralogy, 13, 749759.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A64, 112122.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical-Structural Mineral Classification System, 9th edition. Schweizerbartsche, Stuttgart, Germany, 870 pp.Google Scholar
Tappe, S., Jenner, G.A., Foley, S.F., Heaman, L., Besserer, D., Kjarsgaard, B.A. and Ryan, B. (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos, 76, 491518.CrossRefGoogle Scholar
Tappe, S., Steenfelt, A., Heaman, L.M. and Simonetti, A. (2009) The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite–kimberlite relationships. Lithos, 111, 385399.CrossRefGoogle Scholar
Tripoli, B.A. (2008) Physical volcanology of the Lake Natron-Engaruka monogenetic field, northern Tanzania. Masters thesis, Swiss Federal Institute of Technology, Zurich, 153 pp.Google Scholar
Ulrych, I., Povondra, P., Pivec, E., Rutsek, J. and Sitek, J. (1994) Compositional evolution of metasomatic garnet in melilitic rocks of the Osečnà complex, Bohemia. The Canadian Mineralogist, 32, 637647.Google Scholar
Whittle, K.R., Lumpkin, G.R., Berry, F.J., Oates, G., Smith, K.L., Yudintsev, S. and Zaluzec, N.J. (2007) The structure and ordering of zirconium-and hafnium-containing garnets studied by electron channelling, neutron diffraction and Mossbauer spectroscopy. Journal of Solid State Chemistry, 180, 785791.CrossRefGoogle Scholar
Wiedenmann, D., Zaitsev, A.N., Britvin, S.N., Krivovichev, S.V. and Keller, J. (2009) Alumoåkermanite, (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), a new mineral from the active carbonatite-nephelinite-phonolite volcano Oldoinyo Lengai, northern Tanzania. Mineralogical Magazine, 73, 373384.CrossRefGoogle Scholar
Wiedenmann, D., Keller, J. and Zaitsev, A.N. (2010) Melilite-group minerals at Oldoinyo Lengai, Tanzania. Lithos, 118, 112118.CrossRefGoogle Scholar
Woolley, A.R. and Church, A.A. (2005) Extrusive carbonatites: a brief review. Lithos 85, 114.CrossRefGoogle Scholar
Yakovlevskaya, T.A. (1972) Garnet group. Pp. 1785 in: Minerals (Chukhrov, F.V., editor). Nauka, Moscow (in Russian).Google Scholar
Yamakawa, J., Henmi, C. and Kawahara, A. (1993) Syntheses and X-ray studies of kimzeyite, Ca3Zr2(Al,Fe)2SiO12 . Mineralogical Journal, 16, 371377.CrossRefGoogle Scholar
Zaitsev, A.N. (2009) Nyerereite from calcite carbonatite of Kerimasi volcano, northern Tanzania. Zapiski (Proceedings) of the Russian Mineralogical Society, 138(5), 6377 (in Russian).Google Scholar
Zaitsev, A.N. and Keller, J. (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos, 91, 191207.CrossRefGoogle Scholar
Zaitsev, A.N., Keller, I., Spratt, I., Perova, E.N. and Kearsley, A. (2008) Nyerereite-pirssonite-calcite-shortite relationships in altered natrocarbonatites, Oldoinyo Lengai, Tanzania. The Canadian Mineralogist, 46, 843860.CrossRefGoogle Scholar
Zaitsev, A.N., Keller, I., and Billström, K. (2009 a) Isotopic composition of Sr, Nd, and Pb in pirssonite, shortite and calcite carbonatites from Oldoinyo Lengai volcano, Tanzania. Doklady Earth Sciences 425(2), 302306.CrossRefGoogle Scholar
Zaitsev, A.N., Keller, I., Spratt, J., Jeffries, T.E. and Sharygin, V.V. (2009 b) Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania. Geology of Ore Deposits, 51(7), 608616.CrossRefGoogle Scholar