Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T10:46:46.041Z Has data issue: false hasContentIssue false

Kaznakhtite, Ni6Co3+2(CO3)(OH)16⋅4H2O, a new natural layered double hydroxide, the member of the hydrotalcite supergroup

Published online by Cambridge University Press:  21 July 2022

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Sergey N. Britvin
Affiliation:
St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Murmansk Region, Russia
Maria G. Krzhizhanovskaya
Affiliation:
St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Jörg Göttlicher
Affiliation:
Karlsruhe Institute of Technology, Institute for Synchrotron Radiation, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Victor V. Levitskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
*
*Author for correspondence: Anatoly V. Kasatkin, Email: [email protected]

Abstract

Kaznakhtite, ideally Ni6Co3+2(CO3)(OH)16⋅4H2O, is a new member of the hydrotalcite group within the hydrotalcite supergroup. The mineral was discovered at the Kaznakhtinskiy ultrabasic massif, Altai Republic, SW Siberia, Russia. It occurs as powdery aggregates forming flattened lenses up to 1.5 × 0.5 cm and veinlets up to 1 cm long and up to 1 mm thick in aggregates of chrysotile, lizardite, stichtite and dolomite. Other associated minerals include brucite, chromite, heazlewoodite, manganochromite, magnetite and magnesioferrite. Kaznakhtite aggregates are composed of tiny platy grains up to 0.01 mm across. Kaznakhtite is light green and translucent in aggregates. It has an earthy lustre and white streak. Cleavage is micaceous on {001}. Dcalc = 2.864 g cm–3. The mineral is optically uniaxial (–) with ɛ = 1.657(3) and ω = 1.676(3), and weakly pleochroic in greenish hues, ω > ɛ. Chemical composition (wt.%, electron microprobe, Co valence state determined by XANES spectroscopy, CO2 and H2O calculated by stoichiometry) is: MgO 2.15, NiO 47.40, ZnO 0.22, Al2O3 0.16, Cr2O3 0.98, Co2O3 17.42, Cl 0.63, CO2 5.05, H2O 24.60, –O=Cl –0.14, total 98.47. The empirical formula calculated based on the sum of all metal cations = 8 apfu is (Ni5.54Mg0.47Zn0.02)Σ6.03(Co3+1.83Cr0.11Al0.03)Σ1.97C1.00O2.99(OH)15.84Cl0.16⋅4H2O. Infrared spectroscopy confirmed the presence of CO32– anions, OH groups and H2O molecules. The crystal structure was refined by the Rietveld method with RB = 0.19%. Kaznakhtite is trigonal, space group 3m, a = 3.0515 (3), c = 23.180 (3) Å, V = 186.93 (4) Å3 and Z = 3/8. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.72 (100) (003); 3.863 (24) (006); 2.630 (4) (101); 2.576 (10) (012); 2.294 (6) (015); 1.950 (4) (018); 1.526 (4) (110); and 1.497 (4) (113). Kaznakhtite is a Co3+ analogue of reevesite, Ni6Fe3+2(CO3)(OH)16⋅4H2O. The mineral is named after its type locality.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Elena Zhitova

References

Bindi, L., Christy, A.G., Mills, S.J., Ciriotti, M.E. and Bittarello, E. (2015) New compositional and structural data validate the status of jamborite. The Canadian Mineralogist, 53, 791802.CrossRefGoogle Scholar
Bish, D.L. and Brindley, G.W. (1977) A reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group. American Mineralogist, 62, 458464.Google Scholar
Britvin, S.N. (2008) Structural diversity of layered double hydroxides. Pp 123128 in: Minerals as Advanced Materials II (Krivovichev, S.V., editor). Springer-Verlag, Berlin–Heidelberg.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146(3), 104107 [in Russian].Google Scholar
Britvin, S.N., Krzhizhanovskaya, M.G., Zolotarev, A.A., Gorelova, L.A., Obolonskaya, E.V., Vlasenko, N.S., Shilovskikh, V.V. and Murashko, M.N. (2021) Crystal chemistry of schreibersite, (Fe,Ni)3P. American Mineralogist, 106, 15201529.CrossRefGoogle Scholar
Brookins, D.G. (1988) Eh-pH Diagrams for Geochemistry. Springer Science & Business Media. 176 pp.CrossRefGoogle Scholar
De Waal, S.A. and Viljoen, E.A. (1971) Nickel minerals from Barberton, South Africa: IV. Reevesite, a member of the hydrotalcite group. American Mineralogist, 56, 10771081.Google Scholar
Evans, D.G. and Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Pp. 187 in: Layered Double Hydroxides (Duan, X. and Evans, D.G., editors). Structure, Vol. 119. Springer, Berlin–Heidelberg.Google ScholarPubMed
Grover, K., Komarneni, S. and Katsuki, H. (2010) Synthetic hydrotalcite-type and hydrocalumite-type layered double hydroxides for arsenate uptake. Applied Clay Science, 48, 631637.CrossRefGoogle Scholar
Gülaçar, O.F. and Delaloye, M. (1976) Geochemistry of nickel, cobalt and copper in alpine-type ultramafic rocks. Chemical Geology, 17, 269280.CrossRefGoogle Scholar
He, P., Zhang, Q., Huang, Q., Huang, B. and Chen, T. (2018) Vertically-oriented graphene nanosheet as nano-bridge for pseudocapacitive electrode with ultrahigh electrochemical stability. RSC Advances, 8, 1389113897.CrossRefGoogle ScholarPubMed
Herzberg, C., Vidito, C. and Starkey, N.A. (2016) Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks. American Mineralogist, 101, 19521966.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) UNITCELL: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics. Journal of Applied Crystallography, 30, 84.CrossRefGoogle Scholar
Hughes, H.S., McDonald, I., Faithfull, J.W., Upton, B.G. and Loocke, M. (2016) Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: a case study from the Scottish lithospheric mantle. Lithos, 240, 202227.CrossRefGoogle Scholar
Karpenko, V.Y., Zhitova, E.S., Pautov, L.A., Agakhanov, A.A., Siidra, O.I., Krzhizhanovskaya, M.G., Rassulov, V.A. and Bocharov, V.N. (2020) Akopovaite, Li2Al4(OH)12(CO3)(H2O)3, a new Li member of the hydrotalcite supergroup from Turkestan Range, Kyrgyzstan. Mineralogical Magazine, 84, 301311.CrossRefGoogle Scholar
Kasatkin, A.V., Britvin, S.N., Krzhizhanovskaya, M.G., Chukanov, N.V., Škoda, R., Göttlicher, J., Belakovskiy, D.I., Pekov, I.V. and Levitskiy, V.V. (2021): Kaznakhtite, IMA 2021-056. CNMNC Newsletter 63. Mineralogical Magazine, 85, https://doi.org.10.1180/mgm.2021.74Google Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S. (2012) Natural double layered hydroxides: structure, chemistry, and information storage capacity. Pp 8791 in: Minerals as Advanced Materials II (Krivovichev, S.V., editor). Springer–Verlag, Berlin–Heidelberg.CrossRefGoogle Scholar
Kuznetsov, V.A. (1958) Age of the ultrabasic intrusions of the Gornyy Altai. Izvestiya of the Academy of Sciences of the U.S.S.R. Geologic series, 4, 6674.Google Scholar
Maksimović, Z. (1956) Takovite, hydrous nickel aluminate, a new mineral. Zapisnici Srpskog Geoloskog Drustva, 219224.Google Scholar
Mandarino, J.A. (1981) The Gladstone–Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mendiboure, A. and Schöllhorn, R. (1986) Formation and anion exchange reactions of layered transition metal hydroxides [Ni1–xMx] (OH)2(CO3)x/2(H2O)z(M = Fe,Co). Revue de Chimie minérale, 23, 819827.Google Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363376.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J-M.R., Kameda, T. and Colombo, F. (2012a) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.CrossRefGoogle Scholar
Mills, S.J., Whitfield, P.S., Kampf, A.R., Wilson, S.A., Dipple, G.M., Raudsepp, M. and Favreau, G. (2012b) Contribution to the crystallography of hydrotalcites: the crystal structures of woodallite and takovite. Journal of Geosciences, 58, 273279.Google Scholar
Piret, P. and Deliens, M. (1980) La comblainite, (Ni2+xCo3+1–x)(OH)2(CO3)(1–x)/2yH2O, nouveau minéral du groupe de la pyroaurite. Bulletin de Minéralogie, 103, 113117.CrossRefGoogle Scholar
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.CrossRefGoogle ScholarPubMed
Rives, V. (editor) (2001) Layered Double Hydroxides: Present And Future. Nova Science Publishers, Inc, New York, USA, 493 pp.Google Scholar
Rychkov, V.M. and Rychkova, S.I. (2015) On the findings of stichtite (barbertonite) and talc in Gorny Altai. Prirodnye resoursy Gornogo Altaya [Natural Resources of Gorny Altai], 18, 2731.Google Scholar
Sharma, S.K., Parikh, P.A. and Jasra, R.V. (2008) Eco-friendly synthesis of jasminaldehyde by condensation of 1-heptanal with benzaldehyde using hydrotalcite as a solid base catalyst. Journal of Molecular Catalysis A, 286, 5562.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.Google Scholar
Song, Y. and Moon, H.-S. (1998) Additional data on reevesite and its Co-analogue, as a new member of the hydrotalcite group. Clay Minerals, 33, 285296.CrossRefGoogle Scholar
Tatarinov, A.V., Sapozhnikov, A.N., Prokudin, S.G. and Frolova, L.P. (1985) Stichtite in serpentinites of the Terektinsky Ridge (Altay). Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 114, 575581 [in Russian].Google Scholar
Wang, X. and Song, T. (2017) Buckypaper templating Ni-Co hydroxide nanosheets film with stimuliresponsive properties. Materials Letters, 200, 113117.CrossRefGoogle Scholar
Wang, S.-L. and Wang, P.-C. (2007) In situ XRD and ATR-FTIR study on the molecular orientation of interlayer nitrate in Mg/Al-layered double hydroxides in water. Colloids and Surfaces A, 292, 131138.CrossRefGoogle Scholar
White, J.S. Jr, Henderson, E.P. and Mason, B. (1967) Secondary minerals produced by weathering of the Wolf Creek meteorite. American Mineralogist, 52, 11901197.Google Scholar
Yang, H., Gibbs, R.B., Schwenk, C., Xie, X., Gu, X., Downs, R.T. and Evans, S.H. (2021) Liudongshengite, Zn4Cr2(OH)12(CO3)⋅3H2O, a new mineral of the hydrotalcite supergroup, from the 79 mine, Gila County, Arizona, USA. The Canadian Mineralogist, 59, 763769.CrossRefGoogle Scholar
Zhitova, E.S., Krivovichev, S.V., Pekov, I.V., Yakovenchuk, V.N. and Pakhomovsky, Ya.A. (2016) Correlation between the d-value and the M 2+:M 3+ cation ratio in Mg–Al–CO3 layered double hydroxides. Applied Clay Science, 130, 211.CrossRefGoogle Scholar
Zhitova, E.S., Pekov, I.V., Chaikovskiy, I.I., Chirkova, E.P., Yapaskurt, V.O., Bychkova, Y.V., Belakovskiy, D.I., Chukanov, N.V., Zubkova, N.V., Krivovichev, S.V. and Bocharov, V.N. (2019) Dritsite, Li2Al4(OH)12Cl2⋅3H2O, a new gibbsite-based hydrotalcite supergroup mineral. Minerals, 9, 492.CrossRefGoogle Scholar
Zhitova, E.S., Pekov, I.V., Chukanov, N.V., Yapaskurt, V.O. and Bocharov, S.N. (2020) Minerals of the system stichtite-pyroaurite-iowaite-woodallite from serpentinites of the Terekta Ridge (Gorny Altai, Russia). Russian Geology and Geophysics, 61, 3646.CrossRefGoogle Scholar
Zhitova, E., Chukanov, N., Jonsson, E., Pekov, I., Belakovskiy, D., Vigasina, M., Zubkova, N., Van, K. and Britvin, S. (2021) Erssonite, CaMg7Fe3+2(OH)18(SO4)2⋅12H2O, a new hydrotalcite-supergroup mineral from Långban, Sweden. Mineralogical Magazine, 85, 817826.CrossRefGoogle Scholar
Zhu, Y. and Cao, C. (2015) A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochimica Acta, 176, 141148.CrossRefGoogle Scholar
Supplementary material: File

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material

Download Kasatkin et al. supplementary material(File)
File 1.6 KB