Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T19:20:49.537Z Has data issue: false hasContentIssue false

Kagomé networks of octahedrally coordinated metal atoms in minerals: Relating different mineral structures through octahedral tilting

Published online by Cambridge University Press:  17 September 2020

Ian E. Grey*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3168, Australia
*
*Author for correspondence: Ian E. Grey, Email: [email protected]

Abstract

Kagomé nets of corner-connected triangles of atoms occur in diverse minerals, from the {111} anion arrays in perovskite-group minerals to natural metallic alloys like auricupride, AuCu3, to the cation layers in atacamite-group minerals. We review here two- and three-dimensional kagomé networks in minerals where the kagomé node atoms are octahedrally coordinated in hexagonal tungsten bronze (HTB) arrays. Octahedral tilting, coupled with capping of the apical anions of the triangular groupings of octahedra in the HTB layers, gives rise to several important mineral groups, including pyrochlores, alunite-supergroup minerals, zirconolite and weberite polytypes and spinel-group minerals, as a function of the magnitude and type of the octahedral tilting.

Type
Review
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Andrade, M.B., Atencio, D., Chukanov, N.V. and Ellena, J. (2013) Hydrokenomicrolite, (□,H2O)2Ta2(O,OH)6(H2O), a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. American Mineralogist, 98, 292296.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Atencio, D., Ciriotti, M.E. and Andrade, M.B. (2013) Fluorcalcioroméite, (Ca,Na)2Sb5+2(O,OH)6F, a new roméite-group mineral from Starlera mine, Ferrera, Grischun, Switzerland: description and crystal structure. Mineralogical Magazine, 77, 467473.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Bastos Neto, A.C. and Pereira, V.P. (2017) Ralstonite renamed hydrokenoralstonite, coulsellite renamed fluornatrocoulsellite, and their incorporation into the pyrochlore supergroup. The Canadian Mineralogist, 55, 115120.CrossRefGoogle Scholar
Bayliss, P., Mazzi, F., Munno, R. and White, T.J. (1989) Mineral nomenclature: zirconolite. Mineralogical Magazine, 53, 565569.CrossRefGoogle Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Biagioni, C., Orlandi, P., Nestola, F. and Bianchin, S. (2013) Oxycalcioroméite, Ca2Sb2O6O, from Buca della Vena mine, Apuan Alps, Tuscany, Italy: a new member of the pyrochlore supergroup. Mineralogical Magazine, 77, 30273037.CrossRefGoogle Scholar
Birch, W.D., Pring, A., Reller, A. and Schmalle, H. (1992) Bernalite: a new ferric hydroxide with perovskite structure. Naturwissenschaften, 79, 509511.CrossRefGoogle Scholar
Birch, W.D., Grey, I.E., Mills, S.J., Bougerol, C., Pring, A. and Ansermet, S. (2007) Pittongite, a new tungstate with a mixed-layer, pyrochlore-hexagonal tungsten bronze structure, from Victoria, Australia. The Canadian Mineralogist, 45, 857864.CrossRefGoogle Scholar
Blount, A.M. (1974) The crystal structure of crandallite. American Mineralogist, 59, 4147.Google Scholar
Bøgvard, R. (1938) Weberite, a new mineral from Ivigtut, Meddelelser om Grønland, 119, 111.Google Scholar
Bonazzi, P., Bindi, L., Zoppi, M., Capitani, G.C. and Olmi, F. (2006) Single-crystal diffraction and transmission electron microscopy studies of “silicified” pyrochlore from Narssâssuk, Julianehaab district, Greenland. American Mineralogist, 91, 794801.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Byström, A. (1944) The structure of weberite, Na2MgAlF7. Arkiv foer Kemi, Mineralogi och Geologi, 18B, 17.Google Scholar
Cai, L. and Nino, J.C. (2009) Complex ceramic structures. I Weberites. Acta Crystallographica, B65, 269290.CrossRefGoogle Scholar
Campbell, B., Howard, C.J., Averett, T.B., Whittle, T.A., Schmid, S., Yost, C. and Stokes, H.T. (2018) An algebraic approach to cooperative rotations in networks of interconnected rigid units. Acta Crystallographica, A74, 408424.Google Scholar
Chang, H.Y., Kim, S.W. and Halasyamani, P.S. (2010) Polar hexagonal tungsten oxide (HTO) materials: (1) Synthesis, characterization, functional properties, and structure – property relationships in A 2(MoO3)3(SeO3) (A = Rb+ and Tl+) and (2) Classification, structural distortions, and second-harmonic generating properties of known polar HTOs. Chemistry of Materials, 22, 32413250.CrossRefGoogle Scholar
Christy, A.G. and Atencio, D. (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Pekov, I.V., Vigasina, M.F., Polekhovsky, Y.S., Ternes, B., Schüller, W., Britvin, S.N. and Pushcharovsky, D.Yu. (2019) Stefanweissite, (Ca,REE)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14, a new zirconolite-related mineral from the Eifel paleovolcanic region, Germany. Mineralogical Magazine, 83, 607614.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (2012) Refinement of the crystal structure of zoned philipsbornite-hidalgoite from the Tsumeb mine, Namibia, and hydrogen bonding in the D2+G3+3(T5+O4)(TO3OH)(OH)6 alunite structures. Mineralogical Magazine, 76, 839849.CrossRefGoogle Scholar
Courbion, G., Jacoboni, C. and De Pape, R. (1976) La structure crystalline de Cs2NaAl3F12. Acta Crystallographica, B32, 31903193.CrossRefGoogle Scholar
Crosnier, M.P., Pagnoux, C., Guyomard, D., Verbaere, A., Piffard, Y. and Tournoux, M. (1991) The crystal structure of a novel cyclotrisilicate: Cs8Nb10O23□(Si3O9)2, Its relationship with the pyrochlore and benitoite types. European Journal of Solid State Inorganic Chemistry, 28, 971981.Google Scholar
Dzikowski, T., Groat, L.A. and Jambor, J.L. (2006) The symmetry and crystal structure of gorceixite, BaAl3[PO3(O,OH)]2(OH)6, a member of the alunite supergroup. The Canadian Mineralogist, 44, 951958.CrossRefGoogle Scholar
Fu, W.T. and Ijdo, D.J.W. (2014) Crystal structure of Mn2Ln3Sb3O14 (Ln = La, Pr and Nd): a new ordered rhombohedral pyrochlore. Journal of Solid State Chemistry, 213, 165168.CrossRefGoogle Scholar
Fuentes, A.F., Montemayor, S.M., Maczka, M., Lang, M., Ewing, R.C. and Amador, U. (2018) A critical review of existing criteria for the prediction of pyrochlore formation and stability. Inorganic Chemistry, 57, 1209312105.CrossRefGoogle ScholarPubMed
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valency parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gatehouse, B.M., Grey, I.E., Hill, R.J. and Rossell, H.J. (1981) Zirconolite, CaZrxTi3-xO7; structure refinements for near-end-member compositions with x = 0.85 and 1.30. Acta Crystallographica, B37, 306312.CrossRefGoogle Scholar
Gerand, B., Nowogrocki, G. and Figlarz, M. (1981) A new tungsten trioxide hydrate, WO3⋅⅓H2O: Preparation, characterization and crystallographic study. Journal of Solid State Chemistry, 38, 312320.CrossRefGoogle Scholar
Giuseppetti, G. and Tadini, C. (1978) Re-examination of the crystal structure of weberite. Tschermaks Mineralogische und Petrographische, 25, 5762.CrossRefGoogle Scholar
Grey, I.E., Roth, R.S., Mumme, G., Bendersky, L.A. and Minor, D. (1999) Crystal chemistry of new calcium tantalate dielectric materials. Materials Research Society Symposium Proceedings, 547, 127138.CrossRefGoogle Scholar
Grey, I.E. and Roth, R.S. (2000) New calcium tantalate polytypes in the system Ca2Ta2O7–Sm2Ti2O7. Journal of Solid State Chemistry, 150, 167177.CrossRefGoogle Scholar
Grey, I.E., Roth, R.S., Mumme, W.G., Planes, J., Bendersky, L., Li, C. and Chenavas, J. (2001) Characterization of new 5M and 7M polytypes of niobia-doped Ca2Ta2O7. Journal of Solid State Chemistry, 161, 274287.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G., Ness, T.J., Roth, R.S. and Smith, K.L. (2003) Structural relations between weberite and zirconolite polytypes – refinements of doped 3T and 4M Ca2Ta2O7 and 3T CaZrTi2O7. Journal of Solid State Chemistry, 174, 285295.CrossRefGoogle Scholar
Grey, I.E., Birch, W.D., Bougerol, C. and Mills, S.J. (2006) Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals. Journal of Solid State Chemistry, 179, 38603869.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G., Vanderah, T.A., Roth, R.S. and Bougerol, C. (2007) Chemical twinning of the pyrochlore structure in the system Bi2O3–Fe2O3–Nb2O5. Journal of Solid State Chemistry, 180, 158166.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G. and MacRae, C.M. (2013) Lead-bearing phyllotungstite from the Clara mine, Germany with an ordered pyrochlore-hexagonal tungsten bronze intergrowth structure. Mineralogical Magazine, 77, 5767.CrossRefGoogle Scholar
Grey, I.E., Hochleitner, R., Rewitzer, C., Riboldi-Tunnicliffe, A., Kampf, A.R., MacRae, C.M., Mumme, W.G., Kaliwoda, M., Friis, H. and Martin, C.U. (2020) The walentaite group and the description of a new member, alcantarillaite, from the Alcantarilla mine, Belalcazar, Cordoba, Andalusia, Spain. Mineralogical Magazine, 84, 412419.CrossRefGoogle Scholar
Goreaud, M. and Raveau, B. (1980) Alunite and crandallite: a structure derived from that of pyrochlore. American Mineralogist, 65, 953956.Google Scholar
Groult, D., Pannetier, J. and Raveau, B. (1982) Neutron diffraction study of defect pyrochlores TaWO5.5, HTaWO6, H2Ta2O6 and HTaWO6⋅H2O. Journal of Solid State Chemistry, 41, 277285.CrossRefGoogle Scholar
Hålenius, U. and Bosi, F. (2013) Oxyplumboroméite, Pb2Sb2O7, a new mineral species of the pyrochlore supergroup from Harstigen mine, Värmland, Sweden. Mineralogical Magazine, 77, 29312939.CrossRefGoogle Scholar
Harrison, T.A., Dussack, L.L., Vogt, T. and Jacobson, A.J. (1995) Syntheses, crystal structures, and properties of new layered tungsten(VI)-containing materials based on the hexagonal-WO3 structure: M 2(WO3)3SeO3 (M = NH4, Rb, Cs). Journal of Solid State Chemistry, 120, 112120.CrossRefGoogle Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist, 62, 403410.Google Scholar
Ivanyuk, G.Y., Yakovenchuk, V.N., Panikorovskii, T.L., Konoplyova, N., Pakhomovsky, Y.A., Bazai, A.V., Bocharov, V.N. and Krivovichev, S.V. (2019) Hydroxynatropyrochlore, (Na,Ca,Ce)2Nb2O6(OH), a new member of the pyrochlore group from the Kovdor phoscorite–carbonatite pipe, Kola Peninsula, Russia. Mineralogical Magazine, 83, 107113.CrossRefGoogle Scholar
Kasatkin, A.V., Britvin, S.N., Peretyazhko, I.S., Chukanov, N.V., Škoda, R. and Agakhanov, A.A. (2020) Oxybismutomicrolite, a new pyrochlore-supergroup mineral from the Malkan pegmatite field, central Transbaikalia, Russia. Mineralogical Magazine, 84, 444454.CrossRefGoogle Scholar
Kato, T. (1987) Further refinement of the goyazite structure. Mineralogical Journal, 13, 390396.CrossRefGoogle Scholar
Krivovichev, S.V. (2008). Minerals with antiperovskite structure: a review. Zeitschrift für Kristallographie, 223, 109113.Google Scholar
Kunz, M. and Brown, I.D. (1995) Out-of-center distortions around octahedrally coordinated d 0 transition metals. Journal of Solid State Chemistry, 115, 395406.CrossRefGoogle Scholar
Labbé, P., Goreaud, M., Raveau, B. and Monier, J.C. (1978) Etude comparative des structures M xWO3 de type bronze hexagonal. I. Analyse structural des bronzes de composition M 0.30WO3. Stéréochimie des elements M = Rb1, Tl1 et In1. Acta Crystallographica, B34, 14331438.CrossRefGoogle Scholar
Le Bail, A. (2009) Thermodiffractometry and crystal structures of the hexagonal-tungsten-bronze-related K3Al3F12nH2O (n = 2,1). Powder Diffraction, 24, 292300.CrossRefGoogle Scholar
Le Bail, A., Jacoboni, C., Leblanc, M., De Pape, R., Duroy, H. and Fourquet, L. (1988) Crystal structure of the metastable form of aluminium trifluoride, β-AlF3 and the gallium and indium homologs. Journal of Solid State Chemistry, 77, 96101.CrossRefGoogle Scholar
Le Bail, A., Gao, Y., Fourquet, J.L. and Jacobini, C. (1990) Structure determination of A2NaAl3F12 (A = K, Rb). Materials Research Bulletin, 25, 831839.CrossRefGoogle Scholar
Leblanc, M., Ferey, G., Chevallier, P., Calage, Y. and De Pape, R. (1983) Hexagonal tungsten bronze-type FeIII fluoride: (H2O)0.33FeF3; crystal structure, magnetic properties, dehydration to a new form of iron trifluoride. Journal of Solid State Chemistry, 47, 5358.CrossRefGoogle Scholar
Li, G. and Xue, Y. (2018) Wumuite, IMA 2017-067a. CNMNC Newsletter No. 44, August 2018, page 1018; Mineralogical Magazine, 82, 10151021.Google Scholar
Li, G., Xue, Y. and Xiong, M. (2019) Tewite: a K-Te-W new mineral species with a modified tungsten-bronze type structure, from the Panzhihua-Xichang region, southwest China. European Journal of Mineralogy, 31, 145152.CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. American Mineralogist, 80, 732743.CrossRefGoogle Scholar
Magneli, A. (1952) Tungsten bronzes containing six-membered rings of WO3 octahedra. Nature, 169, 791792.CrossRefGoogle Scholar
Magneli, A. (1953) Studies on the hexagonal tungsten bronzes of potassium, rubidium and cesium. Acta Chemica Scandinavica, 7, 315324.CrossRefGoogle Scholar
Majzlan, J., Stevens, R., Boerio-Goates, J., Woodfield, B.F., Navrotsky, A., Burns, P.C., Crawford, M.K. and Amos, T.G. (2004) Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Physics and Chemistry of Minerals, 31, 518531.CrossRefGoogle Scholar
Majzlan, J., Glasnak, P., Fisher, R.A., White, M.A., Johnson, M.B., Woodfield, B. and Boerio-Goates, J. (2010) Heat capacity, entropy, and magnetic properties of jarosite-group compounds. Physics and Chemistry of Minerals, 37, 635651.CrossRefGoogle Scholar
Malcherek, T., Welch, M.D. and Williams, P.A. (2018) The atacamite family of minerals – a testbed for quantum spin liquids. Acta Crystallographica, B74, 519526.Google Scholar
Matsubara, S., Kato, A., Shimizu, M., Sekiuchi, K. and Suzuki, Y. (1996) Romeite from the Gozaisho mine, Iwaki, Japan. Mineralogical Journal, 18, 155160.CrossRefGoogle Scholar
McNulty, J.A., Gibbs, A.S., Lightfoot, P. and Morrison, F.D. (2019) Octahedral tilting in the polar tungsten bronzes RbNbW2O9 and KNbW2O9. Acta Crystallographica, B75, 815821.Google Scholar
McQueen, T.M., West, D.V., Muegge, B., Huang, Q., Noble, K., Zandbergen, H.W. and Cava, R.J. (2008) Frustrated ferroelectricity in niobate pyrochlores. Journal of Physics: Condensed Matter, 20, 235210.Google ScholarPubMed
Mills, S., Mumme, G., Grey, I. and Bordet, P. (2006) The crystal structure of perhamite. Mineralogical Magazine, 70, 201209.CrossRefGoogle Scholar
Mills, S.J., Kartashov, P.M., Kampf, A.R. and Raudsepp, M. (2010) Arsenoflorencite-(La), a new mineral from the Komi Republic, Russian Federation: description and crystal structure. European Journal of Mineralogy, 22, 613621.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Sejkora, J., Adams, P.M., Birch, W.D. and Plásil, J. (2011) Iangreyite: a new secondary phosphate mineral closely related to perhamite. Mineralogical Magazine, 75, 327336.CrossRefGoogle Scholar
Mills, S.J., Sejkora, J., Kampf, A.R., Grey, I.E., Bastow, T.J., Ball, N.A., Adams, P.M., Raudsepp, M. and Cooper, M.A. (2012) Krásnoite, the fluorophosphate analogue of perhamite from the Huber open pit, Czech Republic and the Silver Coin mine, Nevada, USA. Mineralogical Magazine, 76, 625634.CrossRefGoogle Scholar
Mills, S.J., Nestola, F., Kahlenberg, V., Christy, A.G., Hejny, C. and Redhammer, G.J. (2013) Looking for jarosite on Mars: The low-temperature crystal structure of jarosite. American Mineralogist, 98, 19661971.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Rumsey, M.S. and Spratt, J. (2016) The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R. Mineralogical Magazine, 80, 11951203.CrossRefGoogle Scholar
Mizoguchi, H., Woodward, P.M., Byeon, S-H. and Parise, J.B. (2004). Polymorphism in NaSbO3: structure and bonding in metal oxides. Journal of the American Chemical Society, 126, 31753184.CrossRefGoogle Scholar
Mumme, W.G., Grey, I.E., Birch, W.D., Pring, A., Bougerol, C. and Wilson, N.C. (2010) Coulsellite, CaNa3AlMg3F14, a rhombohedral pyrochlore with 1:3 ordering in both A and B sites, from the Cleveland mine, Tasmania, Australia. American Mineralogist, 95, 736740.CrossRefGoogle Scholar
Najorka, J., Lewis, J.M., Spratt, J. and Sephton, M.A. (2016) Single-crystal X-ray diffraction study of synthetic sodium-hydronium jarosite. Physics and Chemistry of Minerals, 43, 377386.CrossRefGoogle Scholar
O'Keeffe, M. and Hyde, B.G. (1980) Plane nets in crystal chemistry. Philosophical Transactions of the Royal Society of London, A295, 553623.Google Scholar
Pagnoux, C., Verbaere, A., Piffard, Y. and Tournoux, M. (1993) Crystal structure of Cs3Sb3O6(Ge2O7), its relationship with K3Sb3O6(PO4)2. European Journal of Solid State and Inorganic Chemistry, 30, 111123.Google Scholar
Pannetier, J. and Lucas, J. (1970) Nouvelle description de la structure pyrochlore de compose Cd2Nb2O6S. Materials Research Bulletin, 5, 797806.CrossRefGoogle Scholar
Pati, S.K. and Rao, C.N.R. (2008) Kagome network compounds and their novel magnetic properties. Chemical Communications, 2008, 46834693.CrossRefGoogle Scholar
Prinz, H. (1992) Ein neues Syntheseverfahren für die Wolframbronze Cs0.29WO3 und ihre Kristallstruktur. Zeitschrift für Anorganische und Allgemische Chemie, 609, 9598.CrossRefGoogle Scholar
Pye, M.F. and Dickens, P.G. (1979) A structural study of the hexagonal tungsten bronze, K0.26WO3. Materials Research Bulletin, 14, 13971402.CrossRefGoogle Scholar
Sato, E., Nakai, I., Miyawaki, R. and Matsubara, S. (2009) Crystal structures of alunite family minerals: beaverite, corkite, alunite, natroalunite, jarosite, svanbergite, and woodhouseite. Neues Jahrbuch für Mineralogie, Abhandlungen, 185, 313322.CrossRefGoogle Scholar
Subramanian, M.A., Aravamudan, G. and Subba Rao, G.V. (1983) Oxide pyrochlores – a review. Progress in Solid State Chemistry, 15, 55143.CrossRefGoogle Scholar
Syôzi, I. (1951) Statistics of kagomé lattice. Progress of Theoretical Physics, VI, 306308.CrossRefGoogle Scholar
Tarassov, M.P. and Tarassova, E.D. (2018) Structural and chemical evolution of mineral forms of tungsten in the oxidation zone of the Grantcharitza deposit (Western Rhodopes, Bulgaria). Bulgarian Chemical Communications, 50, 270280.Google Scholar
Trump, B.A., Koohpayeh, S.M., Livi, K.J.T., Wen, J.-J., Arpoino, K.E., Ramasse, Q.M., Brydson, R., Feygenson, M., Takeda, H., Takigawa, M., Kimura, K., Nakatsuji, S., Broholm, C.L. and McQueen, T.M. (2018) Universal geometric frustration in pyrochlores. Nature Communications, 2018, 110.Google Scholar
Vaughey, J.T., Harrison, T.A., Dussack, L.L. and Jacobson, A.J. (1994) A new layered vanadium selenium oxide with a structure related to hexagonal tungsten oxide: NH4(VO2)3(SeO3)2. Inorganic Chemistry, 33, 43704375.CrossRefGoogle Scholar
Walenta, K. (1984) Phyllotungstit, ein neues sekondäres Wolframmineral aus der Grube Clara im mittleren Schwarzwald. Neues Jahrbuch für Mineralogie-Monatshafte, 1984, 529535.Google Scholar
Whittle, T.A., Schmid, S. and Howard, C.H. (2015) Octahedral tilting in the tungsten bronzes. Acta Crystallographica, B71, 342348.Google Scholar
Whittle, T.A., Schmid, S. and Howard, C.J. (2018) Octahedral tilting in the tungsten bronzes. Addendum. Acta Crystallographica, B74, 742744.Google Scholar
Witzke, T., Steins, M., Doering, T., Schuckmann, W., Wegner, R. and Pollmann, H. (2011) Fluornatromicrolite, (Na,Ca,Bi)2Ta2O6F, A new mineral species from Quixaba, Paraiba, Brazil. The Canadian Mineralogist, 49, 11051110.CrossRefGoogle Scholar
Yin, J., Li, G., Yang, G., Ge, X., Xu, H. and Wang, J. (2015) Fluornatropyrochlore, a new pyrochlore supergroup mineral from the Boziguoer rare earth element deposit, Baicheng County, Akesu, Xinjiang, China. The Canadian Mineralogist, 53, 455460.Google Scholar
Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Ternes, B., Schüller, W. and Pushcharovsky, D. Yu. (2018) The structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany. Zeitschrift für Kristallographie, 233, 463468.CrossRefGoogle Scholar