Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T19:13:58.381Z Has data issue: false hasContentIssue false

K2.9Rb0.1ErSi3O9: a novel, non-centrosymmetric chain silicate and its crystal structure

Published online by Cambridge University Press:  05 July 2018

M. Wierzbicka-Wieczorek*
Affiliation:
Institute for Mineralogy and Crystallography, University of Vienna, Geocentre, Althanstr. 14, 1090 Vienna, Austria
U. Kolitsch
Affiliation:
Institute for Mineralogy and Crystallography, University of Vienna, Geocentre, Althanstr. 14, 1090 Vienna, Austria Department of Mineralogy and Petrography, Natural History Museum, Burgring 7, 1010 Vienna, Austria
L. Nasdala
Affiliation:
Institute for Mineralogy and Crystallography, University of Vienna, Geocentre, Althanstr. 14, 1090 Vienna, Austria
E. Tillmanns
Affiliation:
Institute for Mineralogy and Crystallography, University of Vienna, Geocentre, Althanstr. 14, 1090 Vienna, Austria
*

Abstract

The new, non-centrosymmetric chain silicate, K2.9Rb0.1ErSi3O9, was prepared by a high-temperature flux-growth technique, and its crystal structure was determined from single-crystal X-ray intensity data (Mo-Kα, 293 K) in space P1, with a = 6.672(1), b = 6.719(1), c = 6.725(1) Å, α = 108.87(3), β = 106.72(3), γ = 107.61(3)°, V = 245.82(6) Å3, Z = 1, R(F) = 2.81%. The compound represents a novel structure type. K2.9Rb0.1ErSi3O9 is characterized by a mixed octahedral-tetrahedral framework, in which each corner of the isolated ErO6 octahedron (<Er—O> = 2.26 Å) is linked to infinite [Si3O9] chains extending approximately along [111]. This connectivity results in a microporous character with two different, narrow channels that extend parallel to [111] and [100] and host K+ cations. The atomic arrangement is strongly pseudorhombohedral. A single-crystal Raman spectrum of K2.9Rb0.1ErSi3O9 is in agreement with the low space-group symmetry. Relations to minerals and synthetic compounds based on [Si3O9] chains are discussed, revealing that the geometry of the chain in K2.9Rb0.1ErSi3O9 is similar to that in pectolite, NaCa2[HSi3O9].

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Institute for Geosciences, Friedrich-Schiller University Jena, Burgweg 11, 07749 Germany.

References

Ananias, D., Ferreira, P., Ferreira, A., Rocha, J., Rainho, J.P., Morais, C.M. and Carlos, L.D. (2001a) Synthesis and characterization of novel microporous framework cerium and europium silicates. Studies in Surface Science and Catalysis, 135, 845852.Google Scholar
Ananias, D., Ferreira, A., Rocha, J., Ferreira, P., Rainho, J.P., Morais, C. and Carlos, L.D. (20016) Novel microporous europium and terbium silicates. Journal of the American Chemical Society, 123, 57355742.CrossRefGoogle Scholar
Ananias, D., Rainho, J.P., Ferreira, A., Lopes, M., Morais, C.M., Rocha, J. and Carlos, L.D. (2002) Synthesis and characterisation of Er(III) and Y(III) sodium silicates: Na3ErSi3O9, a new infrared emitter. Chemistry of Materials, 14, 17671772.CrossRefGoogle Scholar
Ananias, D., Rainho, J.P., Ferreira, A., Rocha, J. and Carlos, L.D. (2004) The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates. Journal of Alloys and Compounds, 374, 219222.CrossRefGoogle Scholar
Angel, R.J. (1985) Structural variation in wollastonite and bustamite. Mineralogical Magazine, 49, 3748.CrossRefGoogle Scholar
Bakakin, V.V. and Solov'eva, L.P. (1970) Crystal structure of Fe3BeSi3O9(F,OH)2, an example of a wollastonite-like silicate chain based on iron. Kristallografiya, 15, 11441151.(in Russian).Google Scholar
Belokoneva, E.L., Sandomirskii, P.A., Simonov, M.A. and Belov, M.V. (1973) Crystal structure of cadmium pectolite NaHCd2[Si3O9]. Doklady Akademii Nauk SSSR, 212, 11051108.(in Russian).Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192-197.CrossRefGoogle Scholar
Buerger, M.J. (1956) The arrangement of atoms in crystals of the wollastonite group of metasilicates. Proceedings of the National Academy of Sciences of the United States of America, 42, 113116.CrossRefGoogle Scholar
Elwell, D. (1975) Flux growth. Pp. 185216 in: Crystal Growth (B.R. Pamplin, editor). International Series of Monographs on the Science of the Solid State, Vol. 6, Pergamon Press, Oxford, UK.Google Scholar
Ferreira, A., Ananias, D., Carlos, L.D., Morais, C.M. and Rocha, J. (2003) Novel microporous lanthanide silicates with tobermorite-like structure. Journal of the American Chemical Society, 125, 1457314579.CrossRefGoogle Scholar
Filipenko, O.S., Dimitrova, O.V., Atovmyan, L.O. and Ponomarev, V.I. (1988) Hydrothermal synthesis and crystal structure of K6Lu2(Si6O18). Kristallografiya, 33, 11221127.(in Russian).Google Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent isotropic displacement factor. Ada Crystallographica, C44, 775-776.CrossRefGoogle Scholar
Flack, H.D. (1983) On enantiomorph-polarity estima-tion. Ada Crystallographica, A39, 876-881.Google Scholar
Gard, J.A. and Taylor, H.F.W. (1960) The crystal structure of foshagite. Ada Crystallographica, 13, 785793.CrossRefGoogle Scholar
Gelato, L.M. and Parthé, E. (1987) STRUCTURE TIDY — a computer program to standardize crystal structure data. Journal of Applied Crystallography, 20, 139143.CrossRefGoogle Scholar
Genkina, E.A., Belokoneva, E.L., Mill, B.V., Butashin, A.V. and Maksimov, B.A. (1992) Synthesis and crystal structure of the new double silicate rubidium niobium silicate (RbNbSiO5 = Rb3Nb3[Si3O9]O6). Kristallografiya, 37, 606612.(in Russian).Google Scholar
Glasser, L.S. Dent, Gunawardane, R.P. and Howie, R.A. (1991) The crystal structure of sodium strontium silicate, Na4SrSi3O9. Zeitschrift fir Kristallographie, 197, 5965.CrossRefGoogle Scholar
Hammer, V.M.F., Libowitzky, E. and Rossman, G.R. (1998) Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa2[Si3O8(OH)], and serandite, NaMn2[Si3O8(OH)]. American Mineralogist, 83, 569576.CrossRefGoogle Scholar
Hesse, K.F. (1984) Refinement of the crystal structure of wollastonite-2M (parawollastonite). Zeitschrift fur Kristallographie, 168, 9398.CrossRefGoogle Scholar
Ilyushin, G.D. and Blatov, V.A. (2002) Crystal chemistry of zirconosilicates and their analogs: topological classification of MT frameworks and suprapolyhedral invariants. Ada Crystallographica, B58, 198-218.CrossRefGoogle Scholar
Jovanovski, G., Makreski, P., Kaitner, K. and Boevd, B. (2009) Silicate minerals from Macedonia. Complementary use of vibrational spectroscopy and X-ray powder diffraction for identification and detection purposes. Croatica Chemica Ada, 82, 363386.Google Scholar
Kolitsch, U. and Tillmanns, E. (2004) Synthesis and crystal structure of a new microporous silicate with a mixed octahedral-tetrahedral framework: Cs3ScSi8O19. Mineralogical Magazine, 68, 677686.CrossRefGoogle Scholar
Kolitsch, U., Wierzbicka, M. and Tillmanns, E. (2006) BaY2Si3O10, a new flux-grown trisilicate. Ada Crystallographica, C62, i97-i99.CrossRefGoogle Scholar
Kolitsch, U., Wierzbicka-Wieczorek, M. and Tillmanns, E. (2009) Crystal chemistry and topology of two flux-grown yttrium silicates: BaKYSi2O7 and Cs3YSi8O19. The Canadian Mineralogist, 47, 421431.CrossRefGoogle Scholar
Kostova, M.H., Ananias, D., Almeida Paz, F.A., Ferreira, A., Rocha, J. and Carlos, L.D. (2007) Evolution of photoluminescence across dimensionality in lanthanide silicates. The Journal of Physical Chemistry, B, 111, 35763582.CrossRefGoogle Scholar
Lo, F.-R. and Lii, K.-H. (2005) High-temperature, high-pressure hydrothermal synthesis and characterization of a new framework stannosilicate: Cs2SnSi3O9. Journal of Solid State Chemistry, 178, 10171022.CrossRefGoogle Scholar
Makarova, T.A., Stavitskaya, G.P. and Pivovarova, L.N. (1978) Synthesis and physicochemical study of serandite. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 14, 335340.(in Russian).Google Scholar
Makreski, P., Jovanovski, G., Gajovi, A., Biljan, T., Angelovski, D. and Jaimovic, R. (2006) Minerals from Macedonia. XVI. Vibrational spectra of some common appearing pyroxenes and pyroxenoids. Journal of Molecular Structure, 788, 102114.CrossRefGoogle Scholar
Maksimov, B.A., Kalinin, V.P., Merinov, B.V., Ilyukhin, V.V. and Belov, N.V. (1980) The crystal structure of rare-earth Na, Y-metasilicate Na3YSi3O9. Doklady Akademii Nauk SSSR, 252, 875879.(in Russian).Google Scholar
Mellini, M. and Merlino, S. (1982) The crystal structure of cascandite, CaScSi3O8(OH). American Mineralogist, 67, 604609.Google Scholar
Ohashi, Y. and Finger, L.W. (1978) The role of octahedral cations in pyroxenoid crystal chemistry. I. Bustamite, wollastonite, and the pectolite-schizo-lite-serandite series. American Mineralogist, 63, 274288.Google Scholar
Peacor, D.R. and Buerger, M.J. (1962) Determination and refinement of the crystal structure of bustamite, CaMnSi2O6. Zeitschrift für Kristallographie, 117, 331343.CrossRefGoogle Scholar
Ponomarev, V.I., Filipenko, O.S. and Atovmyan, L.O. (1988) Crystal structures of the K-Ho triorthosilicate K3HoSi3O8(OH)2 at 300 K and of the dehydration product K3HoSi3O9 at 880 K. Kristallografiya, 33, 98104.(in Russian).Google Scholar
Rocha, J. and Carlos, L.D. (2003) Microporous material containing lanthanide metals. Current Opinion in Solid State and Materials Science, 7, 199205.CrossRefGoogle Scholar
Rocha, J., Ferreira, P., Carlos, L.D. and Ferreira, A. (2000) The first microporous framework cerium silicate. Angewandte Chemie, International Edition, 39, 32763279.3.0.CO;2-Y>CrossRefGoogle Scholar
Rutstein, M.S. and White, W.B. (1971) Vibrational spectra of high-calcium pyroxenes and pyroxenoids. American Mineralogist, 56, 877887.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751-767.CrossRefGoogle Scholar
Sheldrick, G.M. (2007) A short history of SHELX. Ada Crystallographica, A64, 112—122.Google Scholar
Simonov, M.A., Belokoneva, E.X. and Belov, N.V. (1978) Refined crystal structure of synthetic cadmium pectolite NaHCd2[Si3O9]. Doklady Akademii Nauk SSSR, 240, 843846.(in Russian).Google Scholar
Spek, A.L. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. E. Schweizerbart'sche Verlagsbuch- handlung, Stuttgart, Germany, 870 pp.Google Scholar
Takeuchi, Y., Kudoh, Y. and Yamanaka, T. (1976) Crystal chemistry of the serandite-pectolite series and related minerals. American Mineralogist, 61, 229237.Google Scholar
Tolksdorf, W. (1994) Flux growth. Pp. 563-611 in: Handbook of Crystal Growth (D.T.J. Hurle, editor). Vol. 2, Chapter 10, North-Holland, Amsterdam, The Netherlands.Google Scholar
Villafuerte-Castrejon, M.E., Dago, A. and Pomes, R. (1994) Crystal structure determination of Li2Ca4Si4O13. Journal of Solid State Chemistry, 112, 438440.CrossRefGoogle Scholar
Wanklyn, B.M. (1975) Practical aspects of flux growth by spontaneous nucleation. Pp. 217-288 in: Crystal Growth (B.R. Pamplin, editor). International Series of Monographs on the Science of the Solid State, Vol. 6, Pergamon Press, Oxford, UK.Google Scholar
Weil, M. (2005) Parawollastonite-type Cd3[Si3O9]. Ada Crystallographica, E61, i102-i104.CrossRefGoogle Scholar
Wierzbicka-Wieczorek, M. (2007) Syntheses, crystal structures and crystal chemistry of new mixed-framework silicates and a new molybdate structure type. PhD Thesis, Institute of Mineralogy and Crystallography, University of Vienna, Austria, 186 pp.Google Scholar
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2008a) Novel synthetic alkali-yttrium silicates with a new microporous mixed framework topology: (Rb,Cs)9Y7Si24O63 and isotypic Rb9Y7Si24O63. Crystal Research and Technology, 43, 12101219.CrossRefGoogle Scholar
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2008b) Flux syntheses and crystal structures of new compounds with decorated kröhnkite-like chains. Ada Chimica Slovenica, 55, 909917.Google Scholar
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2010a) Preparation and structural study of five new trisilicates, SrY2Si3O10 and BaREE2Si3O10 (REE = Gd, Er, Yb, Sc), including a review on the geometry of the Si3Oi0 unit. European Journal of Mineralogy, 22, 245258.CrossRefGoogle Scholar
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2010b) Flux growth and crystal structures of three new complex silicates of scandium. The Canadian Mineralogist, 48, 5168.CrossRefGoogle Scholar