Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T08:22:12.987Z Has data issue: false hasContentIssue false

Jarosite–butlerite intergrowths in non-stoichiometric jarosites: crystal chemistry of monoclinic natrojarosite–hydroniumjarosite phases

Published online by Cambridge University Press:  05 July 2018

I. E. Grey*
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
N. V. Y. Scarlett
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
P. Bordet
Affiliation:
Institut Néel, CNRS and Université Joseph Fourier, BP166, 38042 Grenoble, France
H. E. A. Brand
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia Bragg Institute, ANSTO, Locked Bag 2001 Kirawee DC, NSW 2232, Australia
*

Abstract

Monoclinic, non-stoichiometric natrojarosite—hydroniumjarosite solid solution phases have been synthesized hydrothermally over a range of temperatures, starting compositions and reaction times, and have been characterized using Rietveld refinement of synchrotron X-ray diffraction data, and chemical and thermal analyses. The H atom locations have been obtained from refinement of neutron diffraction data on a deuterated sample. The results confirm a direct relationship between the monoclinic distortion and the ordering of iron site vacancies in one of two independent iron sites. Ordering of iron vacancies gives rise to domains containing butlerite-like 7 Å chains of corner-connected octahedra and tetrahedra. The formation of these chains within (100) planes results in an expansion of the monoclinic a lattice parameter and a contraction of the c parameter relative to stoichiometric jarosites. The results support a recent model for iron deficiency, whereby an iron vacancy is compensated by the replacement of four coordinated OH– ions by H2O molecules, with one of the H2O molecules coming from deprotonation of H3O+. The general formula, based on intergrowth of stoichiometric jarosite and non-stoichiometric, butlerite-like regions, is [(Na,H3O)Fe3(SO4)2(OH)6]1–y[(H2O)Fe2(SO4)2(OH)2(H2O)4]y.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, B.M. and Nocera, D.G. (2005) Long-range magnetic ordering in iron jarosites prepared by redox-based hydrothermal methods. Journal of the American Chemical Society, 127, 8985-8993.CrossRefGoogle ScholarPubMed
Basciano, L.C. and Peterson, R.C. (2007) Jarosite–hydronium jarosite solid-solution series with full iron site occupancy: mineralogy andcrystal chemistry. American Mineralogist, 92, 1464-1473.CrossRefGoogle Scholar
Basciano, L.C. and Peterson, R.C. (2008) Crystal chemistry of the natrojarosite–jarosite and natrojarosite –hydronium jarosite solid-solution series: a synthetic study with full Fe site occupancy. American Mineralogist, 93, 853-862.CrossRefGoogle Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919-927.CrossRefGoogle Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B. and Shi, X. (2010) The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. Journal of Synchrotron Radiation, 17, 653-658.CrossRefGoogle ScholarPubMed
Borene, J. (1970) Structure crystalline de la parabutlerite. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 93, 185-189.Google Scholar
Bruker, (2008) TOPAS Version 4.1. Bruker AXS, Karlsruhe, Germany.Google Scholar
Coomer, F.C., Harrison, A., Oakley, G.S., Kulda, J., Stewart, J.R., Stride, J.A., Fåk, B., Taylor, J.W. and Visser, D. (2006) Inelastic neutron scattering study of magnetic excitations in the kagome antiferromagnet potassium jarosite. Journal of Physics: Condensed Matter, 18, 8847-8858.Google Scholar
Drouet, C. and Navrotsky, A. (2003) Synthesis, characterization and thermochemistry of K–Na–H3O jarosites. Geochimica et Cosmochimica Acta, 67, 2063-2076.CrossRefGoogle Scholar
Dutrizac, J.E. (1983) Factors affecting alkali jarosite precipitation. Metallurgical Transactions, 14B, 539-.Google Scholar
Fanfani, I. and Zanazzi, P.F. (1971) The crystal structure of butlerite. American Mineralogist, 56, 751-757.Google Scholar
Gasharova, B. (2000) Jarosite AFe3(SO4)2(OH)6: Kristallchemische Charakterisierung und aquatische Reaktionen. PhD Thesis, Ruprecht-Karls Universität, Heidelberg, Germany, 155 pp.Google Scholar
Grohol, D., Nocera, D.G. and Papoutsakis, D. (2003) Magnetism of pure iron jarosites. Physical Review B, 67, http://dx.doi.org/10.1103/PhysRevB.67.064401.CrossRefGoogle Scholar
Inami, T., Nishiyama, M., Maegawa, S. and Oka, Y. (2000) Magnetic structure of the kagomé lattice antiferromagnet potassium jarosite KFe3(OH)6 (SO4)2 . Physical Review B, 61, 12181-12186.CrossRefGoogle Scholar
Kubisz, J. (1970) Studies on synthetic alkali-hydronium jarosites. I. Synthesis of jarosite andnatrojarosite. Mineralogia Polonica, 1, 47-57.Google Scholar
Kubisz, J. (1971) Studies on synthetic alkali-hydronium jarosites. II. Thermal investigations. Mineralogia Polonica, 2, 51-59.Google Scholar
Majzlan, J., Stevens, R., Boerio-Goates, J., Woodfield, B.J., Navrotsky, A., Burns, P.C., Crawford, M.K. and Amos, T.G. (2004) Thermodynamic properties, lowtemperature heat capacity anomalies, andsinglecrystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6 . Physics and Chemistry of Minerals, 31, 518-531.CrossRefGoogle Scholar
Majzlan, J., Botez, C. and Stephens, P.W. (2005) The crystal structures of synthetic Fe2(SO4)3(H2O)5 and the type specimen of lausenite. American Mineralogist, 90, 411-416.CrossRefGoogle Scholar
Mills, S.J., Grey, I.E., Mumme, W.G., Miyawaki, R., Matsubara, S., Bordet, P., Birch, W.D. and Raudsepp, M. (2008) Kolitschite, Pb[Zn0.5,☐0.5]Fe3(AsO4)2(OH)6, a new mineral from the Kintore opencut, Broken Hill, New South Wales. Australian Journal of Mineralogy, 14, 63-67.Google Scholar
Nielsen, U.G., Majzlan, J. and Grey, C.P. (2008) Determination andqua ntification of the local environments in stoichiometric and defect jarosite by solid-state 2H NMR spectroscopy. Chemistry of Materials, 20, 2234-2241.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990) FULLPROF: A Program for RietveldRe finement andPa ttern Matching Analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Rowles, M.R. (2010) CONVAS2: a program for the merging of diffraction data. Powder Diffraction, 25, 297-301.CrossRefGoogle Scholar
Sabelli, C. (1985) Uklonskovite, NaMg(SO4)F,2H2O: new mineralogical data and structure refinement. Bulletin de Mineralogie, 108, 133-138.CrossRefGoogle Scholar
Samadhi, T.W., Elliot, J.C., Jones, L.E. and Alexis, C.A. (2001). Sodium sulphate decomposition in dry atmospheres. Glass Science and Technology, 74, 47-56.Google Scholar
Scarlett, N.V.Y., Grey, I.E. and Brand, H.E.A. (2010) Ordering of iron vacancies in monoclinic jarosites. American Mineralogist, 95, 1590-1593.CrossRefGoogle Scholar
Stephens, P.W. (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography, 32, 281-289.CrossRefGoogle Scholar
Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld refinement of Debye-Scherer synchrotron X-ray data from Al2O3 . Journal of Applied Crystallography, 20, 79-83.CrossRefGoogle Scholar
Ventruti, G., Scordari, F., Schingaro, E., Gualtieri, F. and Meneghini, C. (2005) The order-disorder character of FeOHSO4 obtainedfrom the thermal de composition of metahohmannite, Fe3+ 2 (H2O)4[O(SO4)2]. American Mineralogist, 90, 679-686.CrossRefGoogle Scholar
Wallwork, K.S., Kennedy, B.J. and Wang, D. (2007) The high resolution powder diffraction beamline for the Australian Synchrotron. AIP Conference Proceedings, 879, 879-882.CrossRefGoogle Scholar
Wills, A.S. and Harrison, A. (1996) Structure and magnetism of hydronium jarosite, a model Kagome antiferromagnet. Journal of the Chemical Society. Faraday Transactions, 92, 2161-2166.CrossRefGoogle Scholar
Wills, A.S., Harrison, A., Ritter, C. and Smith, R.I. (2000) Magnetic properties of pure andd iamagnetically doped jarosites: model kagomé antiferromagnets with variable coverage of the magnetic lattice. Physical Review B, 61, 6156-6169.CrossRefGoogle Scholar