Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T20:49:49.922Z Has data issue: false hasContentIssue false

Investigation of Al,Si order in K-feldspars using 27Al and 29Si MAS NMR

Published online by Cambridge University Press:  05 July 2018

Yuehui Xiao
Affiliation:
Dept. of Geology, University of Illinois, Urbana, IL 61801, USA
R. James Kirkpatrick
Affiliation:
Dept. of Geology, University of Illinois, Urbana, IL 61801, USA
Richard L. Hay
Affiliation:
Dept. of Geology, University of Illinois, Urbana, IL 61801, USA
Youn Joong Kim
Affiliation:
Dept. of Geology, University of Illinois, Urbana, IL 61801, USA
Brian L. Phillips
Affiliation:
Division of Materials Science and Engineering, University of California, Davis, CA 95616, USA

Abstract

This paper presents a 27Al and 29Si MAS NMR study of K-feldspars and demonstrates that the spectra are sensitive to variations in the state of Al,Si order. For synthetically annealed samples, the results are in agreement with previous IR spectroscopy (Harris et al., 1989) and demonstrate that Al,Si rearrangement continues after the samples have become monoclinic as determined by powder XRD. NMR methods provide a significantly improved picture of the state of local Al,Si order in such samples. For triclinic samples, measures of the state of Al,Si order (M1 and M2 of 27Al spectra and M2 of 29Si spectra) correlate well with site occupancies determined by powder XRD, but for the monoclinic samples the NMR parameters continue to change whereas the XRD parameters do not. Interpretations based on the NMR results for the synthetically disordered samples are consistent with 1-step disordering, as observed by XRD. 27Al and 29Si MAS NMR is likely to be a useful tool for probing the state of local Al,Si order in a wide variety of natural samples.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasi, A., Brajkovic, A. and Blasi, C.D.P. (1984) Dry-heating conversion of low microcline to high sanidine via a one-step disordering process. Bull. Mineral., 107, 423–35.Google Scholar
Bohm, H. (1983) Modulated structures at phase transitions. Amer. Mineral., 68, 11–17.Google Scholar
Borg, I.Y. and Smith, D.K. (1969) Calculated X-ray Powder Patterns for Silicate Minerals. Geol. Soc. Amer., Mem. 122.CrossRefGoogle Scholar
Burnham, C.W. (1962) LCLSQ-MARK VI, Least-squares refinement of crystallographic lattice parameters. Carnegie Inst. Washington Yearb., 61, 132–5.Google Scholar
Dal Negro, A., Pieri, R.D. and Quareni, S. (1978) The Crystal Structures of Nine K Feldspars from the Adamello Massif (Northern Italy). Ada Crystallogr., B34, 2699–707.CrossRefGoogle Scholar
Eggleton, R.A., and Buseck, P.R. (1980) The Orthoclase-Microcline Inversion: A High-Resolution Transmission Electron Microscope Study and Strain Analysis. Contrib. Mineral. Petrol., 74, 123–33.CrossRefGoogle Scholar
Engelhardt, G., Lippmaa, E. and Magi, M. (1981) Ordering of silicon and aluminum ions in the framework of NaX zeolites. A solid-state high-resolution Si NMR study. J. Chem. Soc, Chem. Comm., 712-3.CrossRefGoogle Scholar
Fyfe, C. A., Gobbi, G. C, Murphy, W. J., Ozubko, R. S. and Slack, D. A. (1984) Investigation of the contributions to the 29Si MAS NMR line widths of zeolites and the detection of crystallographically inequivalent sites by the study of highly siliceous zeolites. J. Amer. Chem. Soc, 106, 4435–8.CrossRefGoogle Scholar
Goldsmith, J.R. and Laves, F. (1954) The microcline-sanidine stability relations. Geochim. Cosmochim. Acta, 5, 1–19.CrossRefGoogle Scholar
Harris, M.J., Salje, K.H., Guttler B.K. and Carpenter, M.A. (1989) Structural States of Natural Potassium Feldspar: An Infrared Spectroscopic Study. Phys. Chem. Minerals, 16, 649–58.CrossRefGoogle Scholar
Hay, R.L., Lee, M., Kolata, D.R., Matthews, J.C. and Morton, J.P. (1988) Epidodic potassic diagenesis of Ordovician tuffs in the Mississippi Valley area. Geology, 16, 743–7.2.3.CO;2>CrossRefGoogle Scholar
Herrero, C.P., Sanz, J. and Serratosa, J.M. (1989) Dispersion of Charge Deficits in the Tetrahedral Sheet of Phyllosilicates. Analysis from 29Si NMR Spectra. J. Phys. Chem., 93, 4311–5.CrossRefGoogle Scholar
Kim, Y.J. (1989) Powder X-ray diffraction and transmission electron microscopic study of silicon-aluminum disordering in annealed Amelia albite and bancroft oligoclase. Ms. thesis. Dept. of Geology, U. of Illinois.Google Scholar
Kirkpatrick, R.J. (1988) MAS NMR spectroscopy of minerals and glasses. In Spectroscopic methods in mineralogy and geology. (Hawthorne, F.C., ed.) Reviews in Mineralogy, 18, 341–403.Google Scholar
Kirkpatrick, R.J., Kinsey, R.A., Smith, K.A., Henderson, D.M. and Oldfield, E. (1985) High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and plagioclase feldspars. Amer. Mineral., 70, 106–23.Google Scholar
Kirkpatrick, R.J., Carpenter, M.A., Yang, W.-H. and Montez, B. (1987) 29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars. Nature, 325, 236–8.CrossRefGoogle Scholar
Klinowski, J., Ramdas, S. Thomas, J.M., Fyfe, C.A. and Hartman, J.S. (1982) A re-examination of Si, Al ordering in zeolites NaX and NaY. J. Chem. Soc, Faraday Trans., 2. 78, 1025–50.CrossRefGoogle Scholar
Kroll, H. (1971) Determination of Al, Si distribution in alkali feldspar from X-ray powder data. Neues Jahrb. fur Mineral., Mh., 91-4.Google Scholar
Kroll, H. (1973) Estimation of the Al, Si distribution of feldspars from the lattice translations Tr[110] and Tr[110]. I. Alkali feldspars. Contrib. Mineral. Petrol, 39, 141–56.CrossRefGoogle Scholar
Kroll, H. and Knitter, R. (1991) Al, Si exchange kinetics in sanidine and anorthoclase and modeling of rock cooling paths. Amer. Mineral., 76, 928–41.Google Scholar
Kroll, H. and Ribbe, P.H. (1983) Lattice parameters, composition and Al,Si order in alkali feldspars. In Feldspar Mineralogy. (Ribbe, P.H., ed.) Review in Mineralogy, 2, 2nd edition, MSA, 57–99.CrossRefGoogle Scholar
Lippmaa, E., Magi, M. Samoson, A. Engelhardt, G. and Grimmer, A.-R. (1980) Structural studies of silicates by solid-state high-resolution Si NMR. J. Amer. Chem. Soc, 102, 4889–93.CrossRefGoogle Scholar
Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Amer. Mineral., 39, 92–6.Google Scholar
Phillips, B.L., Allen, F.M. and Kirkpatrick, R.J. (1987) High-resolution solid-state 27A1 NMR spectroscopy of Mg-rich vesuvianite. Amer. Mineral, 72, 1190–4.Google Scholar
Phillips, B.L., Kirkpatrick, R.J. and Hovis, G.L. (1988) 27A1, 29Si and 23Na MAS NMR Study of an Al, Si Ordered Alkali Feldspar Solid Solution Series. Phys. Chem. Minerals, 16, 262–72.CrossRefGoogle Scholar
Putnis, A. and Angel, R.J. (1985) Al, Si Ordering in Cordierite Using ‘Magic Angle Spinning’ NMR. II. Models of Al, Si Order from NMR Data. Phys. Chem. Minerals, 12, 217–22.CrossRefGoogle Scholar
Putnis, A. and Bish, D.L. (1983) The mechanism and kinetics of Al, Si ordering in Mg-cordierite. Amer. Mineral, 68, 60–5.Google Scholar
Putnis, A., Salje., E., Redfern, S.A.T., Fyfe, C.A. and Strobl, H. (1987) Structural States of Mg-Cordierite I: Order Parameters from Synchrotron X-Ray and NMR Data. Phys. Chem. Minerals, 14, 446–54.CrossRefGoogle Scholar
Ramdas, S. and Klinowski, J. (1984) A simple correlation between isotropic 29Si-NMR chemical shifts and T-O-T angles in zeolite frameworks. Nature, 308, 521–3.CrossRefGoogle Scholar
Ribbe, P.H. (1983) Aluminum-silicon order in feldspars: domain textures and diffraction patterns. In Feldspar Mineralogy. (Ribbe, P.H. ed.) Reviews in Mineralogy, 2, 2nd edition, MSA, 21–55.CrossRefGoogle Scholar
Salje, E. (1987) Structural States of Mg-Cordierite II: Landau Theory. Phys. Chem. Minerals., 14, 455-60.CrossRefGoogle Scholar
Samoson, A. (1985) Satellite Transition High-Resolu-tion NMR of Quadrupolar Nuclei in Powders. Chem. Phys. Letts., 119, 29–32.CrossRefGoogle Scholar
Sherriff, B.L. and Hartman J.S. (1985) Solid-state high-resolution 29Si NMR of feldspars: Al-Si disorder and the effects of paramagnetic centers. Canad. Mineral, 23, 205–12.Google Scholar
Sipling, P.J. and Yund, R.A. (1974) Kinetics of Al/Si disordering in alkali feldspars. In Geochemical transport and kinetics. (Hofmann, A.W. et al. eds.) Carnegie Institute of Washington Publication 634, 185–93.Google Scholar
Slichter, C.P. (1990) Principles of Magnetic Resonance. 3rd ed. Springer-Verlag.CrossRefGoogle Scholar
Smith, J.V. (1974) Feldspar Minerals, Vol. 1 and Vol. 2, Springer-Verlag, New York Heidelberg Berlin.Google Scholar
Smith, J.V., Blackwell, C.S. and Hovis, G.L. (1984) NMR of albite-microcline series. Nature, 309, 140-2.CrossRefGoogle Scholar
Smith, K.A., Kirkpatrick, R.J., Oldfield, E. and Henderson, D.M. (1983) High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-formation silicates. Amer. Mineral., 68, 1206–15.Google Scholar
Stewart, D.B. and Ribbe, P.H. (1969) Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. Amer. J. Sci, 161-b., 444-62.Google Scholar
Wright, T.L. and Stewart, D.B. (1968) X-ray and optical study of alkali feldspar I. Determination of composition and structural state from refined unit-cell parameters and 2V. Amer. Mineral., 53, 38–87.Google Scholar
Xu, H., Luo, G., Hu, M. and Chen, J. (1989) HRTEM Study of The Superlattice Orthoclase. Ada Physica Sinica, 38, 1527–9.Google Scholar
Yang, W., Kirkpatrick, R.J. and Henderson, D.M. (1986) High-resolution 29Si, 27A1 and 23Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase. Amer. Mineral., 71, 712–26.Google Scholar