Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T11:17:13.941Z Has data issue: false hasContentIssue false

Interfacial reactivity of radionuclides: emerging paradigms from molecular-level observations

Published online by Cambridge University Press:  05 July 2018

A. R. Felmy*
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352, USA
E. S. Ilton
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352, USA
K. M. Rosso
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352, USA
J. M. Zachara
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352, USA
*

Abstract

Over the past few decades an increasing array of molecular-level analytical probes has provided new detailed insight into mineral and radionuclide interfacial reactivity in subsurface environments. This capability has not only helped change the way mineral surface reactivity is studied but also how field-scale contaminant migration problems are addressed and ultimately resolved. Here we review relatively new interfacial reactivity paradigms and assess their implications for future research directions. Specific examples include understanding the following: the role of site-to-site electron conduction at mineral surfaces and through bulk mineral phases and the effects of local chemical environment on the stability of intermediate species in oxidation-reduction reactions and the importance of mechanistic reaction pathways for defining possible reaction products and thermodynamic driving force. The discussion also includes examples of how detailed molecular/microscopic characterization of field samples has changed the way complex contaminant migration problems are conceptualized and modelled.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amonette, J.E., Workman, D.J., Kennedy, D.W., Fruchter, J.S. and Gorby, Y.A. (2000) Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology, 34, 46064613.CrossRefGoogle Scholar
Arai, Y., Marcus, M.K., Tamura, N., Davis, J.A. and Zachara, J.M. (2007) Spectroscopic evidence for uranium bearing precipitates in vadose zone sedi-ments at the Hanford 300-area site. Environmental Science & Technology, 41, 46334639.CrossRefGoogle ScholarPubMed
Behrends, T. and Van Cappellen, P. (2005) Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions. Chemical Geology, 220, 315327.CrossRefGoogle Scholar
Catalano, J.G., Heald, S.M., Zachara, J.M. and Brown, G.E., Jr. (2004) Spectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford Site, Washington State. Environmental Science & Technology, 38, 28222828.CrossRefGoogle ScholarPubMed
Catalano, J.G., MclCinley, J.P., Zachara, J.M., Smith, S.C. and Brown, G.E., Jr. (2006) Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environmental Science & Technology, 40, 25172524.CrossRefGoogle ScholarPubMed
Chakraborty, S., Favre, F., Banerjee, D., Scheinost, A.C., Mullet, M., Ehrhardt, J.J., Brendle, J., Vidal, L. and Charlet, L. (2010) U(VI) Sorption and reduction by Fe(II) sorbed on montmorillonite. Environmental Science & Technology, 44, 37793785.CrossRefGoogle ScholarPubMed
Charlet, L., Silvester, E. and Liger, E. (1998) N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface = FeIIIOFeIIOH° species, as major reductant. Chemical Geology, 151, 8593.CrossRefGoogle Scholar
Chun, C.L., Penn, R.L. and Arnold, WA. (2006) Kinetic and microscopic studies of reductive transformations of organic contaminants on goethite. Environmental Science & Technology, 40, 32993304.CrossRefGoogle ScholarPubMed
Cui, D.Q. and Eriksen, T.E. (1996a) Reduction of pertechnetate by ferrous iron in solution: influence of sorbed and precipitated Fe(II). Environmental Science & Technology, 30, 22592262.CrossRefGoogle Scholar
Cui, D.Q. and Eriksen, T.E. (19966) Reduction of pertechnetate in solution by heterogeneous electron transfer from Fe(II)-containing geological material. Environmental Science & Technology, 30, 22632269.CrossRefGoogle Scholar
Cui, D.Q. and Spahiu, K. (2002) The reduction of U(VI) on corroded iron under anoxic conditions. Radiochimica Acta, 90, 623628.CrossRefGoogle Scholar
Descostes, M., Schlegel, M.L., Eglizaud, N., Descamps, F., Miserque, F. and Simoni, E. (2010) Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochimica et Cosmochimica Acta, 74, 15511562.CrossRefGoogle Scholar
Eisner, M., Schwarzenbach, R.P. and Haderlein, S.B. (2004) Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environmental Science & Technology, 38, 799807.CrossRefGoogle Scholar
Felmy, A. (1990) GMIN: a computerized chemical equilibrium model using a constrained minimization of the gibbs free energy. PNNL-7281, Pacific Northwest National Laboratory, Richland, WA.CrossRefGoogle Scholar
Felmy, A.R. and Rai, D. (1999) Application of Pitzer's equations for modeling the aqueous thermodynamics of actinide species in natural waters: a review. Journal of Solution Chemistry, 28, 533—553.CrossRefGoogle Scholar
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Kukkadapu, R.K, McKinley, J.P., Heald, S.M., Liu, C.X. and Plymale, A.E. (2004) Reduction of TcO^ by sediment-associated biogenic Fe(II). Geochimica et Cosmochimica Acta, 68, 3171—3187.CrossRefGoogle Scholar
Grambow, B., Smailos, E., Geckeis, H., Muller, R. and Hentschel, H. (1996) Sorption and reduction of uranium(VI) on iron corrosion products under reducing saline conditions. Radiochimica Acta, 74, 149154.CrossRefGoogle Scholar
Gregory, K.B., Larese-Casanova, P., Parkin, G.F. and Scherer, M.M. (2004) Abiotic transformation of hexahydro-l,3,5-trinitro-l,3,5-triazine by fell bound to magnetite. Environmental Science & Technology, 38, 14081414.CrossRefGoogle Scholar
Guillaumont, R. and Mompean, F.J. (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier, Amsterdam.Google Scholar
Handler, R.M., Beard, B.L., Johnson, CM. and Scherer, M.M. (2009) Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environmental Science & Technology, 43, 11021107.CrossRefGoogle ScholarPubMed
Hiemstra, T. and Van Riemsdijk, W.H. (2006) On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. Journal of Colloid and Interface Science, 301, 118.CrossRefGoogle ScholarPubMed
Hiemstra, T. and Van Riemsdijk, W.H. (2009) A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density. Geochimica et Cosmochimica Acta, 73, 4423—4436.CrossRefGoogle Scholar
Hiemstra, T., Barnett, M.O. and van Riemsdijk, W.H. (2007) Interaction of silicic acid with goethite. Journal of Colloid and Interface Science 310, 8 — 17.CrossRefGoogle ScholarPubMed
Hofstetter, T.B., Neumann, A. and Schwarzenbach, R.P. (2006) Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environmental Science & Technology, 40, 235—242.CrossRefGoogle ScholarPubMed
Ilton, E.S., Haiduc, A., Moses, CO., Heald, S.M., Elbert, D.C. and Veblen, D.R. (2004) Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls. Geochimica et Cosmochimica Ada, 68, 24172435.CrossRefGoogle Scholar
Ilton, E.S., Haiduc, A., Cahill, C.L. and Felmy, A.R. (2005) Mica surfaces stabilize pentavalent uranium. Inorganic Chemistry, 44, 29862988.CrossRefGoogle ScholarPubMed
Ilton, E.S., Qafoku, N.P., Liu, C.X., Moore, D.A. and Zachara, J.M. (2008) Advective removal of intra-particle uranium from contaminated vadose zone sediments, Hanford, US. Environmental Science & Technology, 42, 15651571.CrossRefGoogle Scholar
Ilton, E.S., Boily, J.F., Buck, E.C., Skomurski, F.N., Rosso, K.M., Cahill, C.L., Bargar, J.R. and Felmy, A.R. (2010) Influence of dynamical conditions on the reduction of U-VI at the magnetite-solution interface. Environmental Science & Technology, 44, 170176.CrossRefGoogle ScholarPubMed
Jang, J.H., Dempsey, B.A. and Burgos, W.D. (2008) Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid. Water Research, 42, 22692277.CrossRefGoogle ScholarPubMed
Jeon, B.H., Dempsey, B.A., Burgos, W.D., Barnett, M.O. and Roden, E.E. (2005) Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides. Environmental Science & Technology, 39, 56425649.CrossRefGoogle ScholarPubMed
Klausen, J., Trober, S.P., Haderlein, S.B. and Schwarzenbach, R.P. (1995) Reduction of substi-tuted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environmental Science & Technology, 29, 23962404.CrossRefGoogle Scholar
Lemire, R.J., Fuger, J., Nitsche, H., Potter, P., Rand, M.H., Rydberg, J., Spahiu, K., Sullivan, J.C., Ullman, W.J., Vitorge, P. and Wanner, H. (editors) (2001) Chemical thermodynamics of neptunium and plutonium. Elsevier, Amsterdam, 845 pp.Google Scholar
Liger, E., Charlet, L. and Van Cappellen, P. (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochimica et Cosmochimica Ada, 63, 29392955.CrossRefGoogle Scholar
Liu, C.X., Zachara, J.M., Smith, S.C., McKinley, J.P. and Ainsworth, C.C. (2003) Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochimica et Cosmochimica Ada, 67, 28932912.CrossRefGoogle Scholar
Liu, C.X., Zachara, J.M., Qafoku, O., McKinley, IP., Heald, S.M. and Wang, Z.M. (2004) Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site USA. Geochimica et Cosmochimica Ada, 68, 45194537.CrossRefGoogle Scholar
Liu, C.X., Zachara, J.M., Yantasee, W., Majors, P.D. and McKinley, J.P. (2006) Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, United States. Water Resources Research, 42, http://dx.doi.org/10.1029/2006WR005031.CrossRefGoogle Scholar
Martell, A.E. and Smith, R.M. (2003) NIST critically selected stability constants of metal complexes. NIST Standard Reference Database 46 Version 7.0. National Institute of Standards and Technology, Gaithersburg, MD, USA.Google Scholar
McKinley, J.P., Zeissler, C.J., Zachara, J.M., Serne, R.J., Lindstrom, R.M., Schaef, H.T. and Orr, R.D. (2001) Distribution and retention of Cs-137 in sediments at the Hanford Site, Washington. Environmental Science & Technology, 35, 34333441.CrossRefGoogle Scholar
McKinley, J.P., Zachara, J.M., Liu, C.X., Heald, S.C., Prenitzer, B.I. and Kempshall, B.W. (2006) Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford Site, Washington. Geochimica et Cosmochimica Ada, 70, 18731887.CrossRefGoogle Scholar
Missana, T., Maffiotte, U. and Garcia-Gutierrez, M. (2003) Surface reactions kinetics between nanocrys-talline magnetite and uranyl. Journal of Colloid and Interface Science, 261, 154—160.CrossRefGoogle ScholarPubMed
Moyes, L.N., Jones, M.J., Reed, W.A., Livens, F.R., Charnock, J.M., Mosselmans, J.F.W., Hennig, C., Vaughan, D.J. and Pattrick, R.A.D. (2002) An X-ray absorption spectroscopy study of neptunium(V) reactions with mackinawite (FeS). Environmental Science & Technology, 36, 179—183.CrossRefGoogle Scholar
Nakata, K., Nagasaki, S., Tanaka, S., Sakamoto, Y., Tanaka, T. and Ogawa, H. (2002) Sorption and reduction of neptunium(V) on the surface of iron oxides. Radiochimica Ada, 90, 665—669.Google Scholar
O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003) Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environmental Science & Technology, 37, 721—727.CrossRefGoogle ScholarPubMed
Pecher, K., Haderlein, S.B. and Schwarzenbach, R.P. (2002) Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environmental Science & Technology, 36, 17341741.CrossRefGoogle ScholarPubMed
Peretyazhko, T., Zachara, J.M., Heald, S.M., Kukkadapu, R.K., Liu, C., Plymale, A.E. and Resch, C.T. (2008a) Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides. Environmental Science & Technology, 42, 54995506.CrossRefGoogle Scholar
Peretyazhko, T., Zachara, J.M., Heald, S.M., Jeon, B.H., Kukkadapu, R.K., Liu, C., Moore, D. and Resch, C.T. (20086) Heterogeneous reduction of Tc(VII) by Fe(II) at the solid-water interface. Geochimica et Cosmochimica Acta, 72, 15211539.CrossRefGoogle Scholar
Rahnemaie, R., Hiemstra, T. and van Riemsdijk, W.H. (2006a) Inner- and outer-sphere complexation of ions at the goethite-solution interface. Journal of Colloid and Interface Science, 297, 379388.CrossRefGoogle Scholar
Rahnemaie, R., Hiemstra, T. and van Riemsdijk, W.H. (20066) A new surface structural approach to ion adsorption: tracing the location of electrolyte ions. Journal of Colloid and Interface Science, 293, 312321.CrossRefGoogle Scholar
Rai, D., Felmy, A.R., Sterner, S.M., Moore, D.A., Mason, MJ. and Novak, C.F. (1997) The solubility of Th(IV) and U(IV) hydrous oxides in concentrated NaCl and MgCl2 solutions. Radiochimica Acta, 79, 239247.CrossRefGoogle Scholar
Regenspurg, S., Schild, D., Schafer, T., Huber, F. and Malmstrom, M.E. (2009) Removal of uranium(VI) from the aqueous phase by iron(IF) minerals in presence of bicarbonate. Applied Geochemistry, 24, 16171625.CrossRefGoogle Scholar
Ridley, M.K., Hiemstra, T., van Riemsdijk, W.H. and Machesky, MX. (2009) Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model. Geochimica et Cosmochimica Acta, 73, 18411856.CrossRefGoogle Scholar
Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 k and 1 bar (10 pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, 2131, 461pp.Google Scholar
Sani, R.K., Peyton, B.M., Amonette, J.E. and Geesey, G.G. (2004) Reduction of uranium(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr)oxides. Geochimica et Cosmochimica Acta, 68, 26392648.CrossRefGoogle Scholar
Scott, T.B., Allen, G.C., Heard, PJ. and Randell, M.G. (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochimica et Cosmochimica Acta, 69, 56395646.CrossRefGoogle Scholar
Senko, J.M., Mohamed, Y., Dewers, T.A. and Krumholz, L.R. (2005) Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation. Environmental Science & Technology, 39, 25292536.CrossRefGoogle ScholarPubMed
Stefansson, A. (2007) Iron(III) hydrolysis and solubility at 25°C. Environmental Science & Technology, 41, 61176123.CrossRefGoogle ScholarPubMed
Stefansson, A., Seward, T.M. and Gunnarsson, I. (2007) The hydrolysis and cloro [sic] complexation of iron(IIF) in hydrothermal solutions. Geochimica et Cosmochimica Acta, 71, A969.Google Scholar
Stubbs, J.E., Veblen, L.A., Elbert, D.C., Zachara, J.M., Davis, J.A. and Veblen, D.R. (2009) Newly recognized hosts for uranium in the Hanford Site vadose zone. Geochimica et Cosmochimica Acta, 73, 15631576.CrossRefGoogle Scholar
Wang, Z.M., Zachara, J.M., McKinley, J.P. and Smith, S.C. (2005a) Cryogenic laser induced U(VI) fluorescence studies of a U(VI) substituted natural calcite: Implications to U(VI) speciation in contaminated Hanford sediments. Environmental Science & Technology, 39, 26512659.CrossRefGoogle Scholar
Wang, Z.M., Zachara, J.M., Gassman, P.L., Liu, C.X., Qafoku, O., Yantasee, W. and Catalano, J.G. (20056) Fluorescence spectroscopy of U(VF)-silicates and U(VI)-contaminated Hanford sediment. Geochimica et Cosmochimica Acta, 69, 1391—1403.Google Scholar
Yanina, S.V. and Rosso, K.M. (2008) Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science, 320, 218222.CrossRefGoogle ScholarPubMed
Zachara, J.M. (editor) (2005) Uranium geochemistry in vadose zone and aquifer sediments from the 300 area uranium plume. Report PNNL-15121. Pacific Northwest National Laboratory, Richland, WA, USA.CrossRefGoogle Scholar
Zachara, J.M., Smith, S.C., Liu, C.X., McKinley, J.P., Serne, R.J. and Gassman, P.L. (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford Site, USA. Geochimica et Cosmochimica Acta, 66, 193211.CrossRefGoogle Scholar
Zachara, J.M., Heald, S.M., Jeon, B.H., Kukkadapu, R.K., Liu, C.X., McKinley, IP., Dohnalkova, A.C. and Moore, D.A. (2007) Reduction of pertechnetate Tc(VIF) by aqueous Fe(II) and the nature of solid phase redox products. Geochimica et Cosmochimica Acta, 71, 21372157.CrossRefGoogle Scholar