Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T19:47:36.290Z Has data issue: false hasContentIssue false

Infrared powder-absorption spectroscopy of Ca-free P21/c clinopyroxenes

Published online by Cambridge University Press:  05 July 2018

T. Boffa Ballaran*
Affiliation:
Department of Earth Sciences, Downing St., Cambridge CB2 3EQ, UK
M. A. Carpenter
Affiliation:
Department of Earth Sciences, Downing St., Cambridge CB2 3EQ, UK
N. L. Ross
Affiliation:
Department of Geological Sciences, University College London, Gower St., London WC1E 6BT, UK
*

Abstract

Infrared powder-absorption spectra of ten synthetic P21/c pyroxenes with compositions in the clinoenstatite–clinoferrosilite system have been collected at room temperature in the range 50–1500 cm−1. Variations of peak positions as a function of Fe content have been obtained for those vibrational bands whose trend could be followed across the solid solution. Local elastic strains arising from cation substitution have been quantified by means of the autocorrelation function, which gives a measure (Δcorr) proportional to the line width of the IR bands. The structure of clinoenstatite appears to be very homogeneous, whereas Fe-rich pyroxenes have high degrees of local structural hetereogeneities. A positive deviation from linearity of the Δcorr values is observed in the spectral region between 100 and 250 cm−1 and may be indicative of a positive excess enthalpy of mixing of this solid solution. At higher energies the large changes in the phonon spectra as Fe content increases are associated with rotation and deformation of the tetrahedral chains for accommodating the larger cation. The results are compared with similar studies on other chain silicates.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany

Present address: Dept. of Geological Sciences, Virginia Tech, Blacksburg, VA 24061, USA

References

Angel, R.J., Chopelas, A. and Ross, N.L. (1992) Stability of high density clinoenstatite at upper mantle pressures. Nature, 358, 322–4.CrossRefGoogle Scholar
Angel, R.J., McCammon, C. and Woodland, A.B. (1998) Structure, ordering and cation interactions in Ca-free P21/cclinopyroxenes. Phys. Chem. Miner., 25, 249–58.CrossRefGoogle Scholar
Arlt, T., Angel, R.J., Miletich, R., Armbruster, T. and Peters, T. (1998) High pressure P21/cC2/c phase transitions in clinopyroxenes: influence of cation size and electronic structure. Amer. Mineral., 83, 1176–81.CrossRefGoogle Scholar
Atkinson, A.J., Carpenter, M.A. and Salje, E.K.H. (1999) Hard mode infrared spectroscopy of plagioclase feldspars. Eur. J. Mineral., 11, 721.CrossRefGoogle Scholar
Boffa Ballaran, T., Carpenter, M.A., Domeneghetti, M.C., Salje, E.K.H. and Tazzoli, V. (1998) Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes: II. A microscopic perspective. Amer. Mineral., 83, 434–43.CrossRefGoogle Scholar
Boffa Ballaran, T., Carpenter, M.A., Geiger, C.A. and Koziol, A.M. (1999) Local structural heterogeneity in garnet solid solutions. Phys. Chem. Miner., 26, 554–69.CrossRefGoogle Scholar
Boffa Ballaran, T., Carpenter, M.A. and Domeneghetti, M.C. (2001) Phase transition and mixing behaviour of the cummingtonite-grunerite solid solution. Phys. Chem. Miner., 28, 87101.Google Scholar
Carpenter, M.A., Salje, E.K.H. and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral., 10, 621–91.CrossRefGoogle Scholar
Eeckhout, S.G., De Grave, E., McCammon, C.A. and Vochten, R. (2000) Temperature dependence of the hyperfine parameters of synthetic P21/c Mg-Fe clinopyroxenes along the MgSiO3 FeSiO3 join. Amer. Mineral., 85, 943–52.CrossRefGoogle Scholar
Fateley, D.G., McDevitt, N.T. and Bentley, F.F. (1971) Infrared and Raman selection rules for lattice vibrations: the correlation method. Appl. Spectrosc., 25, 155–73.CrossRefGoogle Scholar
Hofmeister, A.M., Fagan, T.J., Campbell, K.M. and Schaal, R.B. (1996) Single-crystal IR spectroscopy of pyrope almandine garnets with minor amounts of Mn and Ca. Amer. Mineral., 81, 418–28.CrossRefGoogle Scholar
Hugh-Jones, D.A., Woodland, A.B. and Angel, R.J. (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Amer. Mineral., 79, 1032–41.Google Scholar
Kanzaki, M. (1991) Ortho/clinoenstatite transition. Phys. Chem. Miner., 17, 726–30.CrossRefGoogle Scholar
Larson, A. and Von Dreele, R.B. (1994) GSAS general structure analysis system. Los Alamos National Laboratory, NM, USA.Google Scholar
Malcherek, T., Kroll, H., Schleiter, M. and Salje, E.K.H. (1995) The kinetics of the monoclinic to monoclinic phase transition in BaAl2Ge2O8-feldspar. Phase Trans., 55, 199215.CrossRefGoogle Scholar
Pacalo, R.E.G. and Gasparik, T. (1990) Reversals of the orthoenstatite–clinoenstatite transition at high pressure and temperatures. J. Geophys. Res., 95, 15853–8.CrossRefGoogle Scholar
Ross, N.L. and Reynard, B. (1999) The effect of iron on the P21/c to C2/c transition in (Mg,Fe)SiO3 clinopyroxenes. Eur. J. Mineral., 11, 585–9.CrossRefGoogle Scholar
Ross, N.L. and Sowerby, J.R. (1999) High–pressure crystal–field spectra of single–crystal clinoferrosilite. Eur. J. Mineral., 11, 791801.CrossRefGoogle Scholar
Salje, E.K.H. and Bismayer, U. (1997) Hard Mode Spectroscopy: the concept and applications. Phase Trans., 63, 175 CrossRefGoogle Scholar
Salje, E.K.H., Carpenter, M.A., Malcherek, T.G.W. and Boffa Ballaran, T. (2000) Autocorrelation analysis of infrared spectra. Eur. J. Mineral., 12, 503–19.CrossRefGoogle Scholar
Tarantino, S.C., Boffa Ballaran, T., Carpenter, M.A., Domeneghetti, M.C. and Tazzoli, V. (2001) Mixing properties of the enstatite-ferrosilite solid solution: II. a microscopic perspective. Eur. J. Mineral., (submitted).CrossRefGoogle Scholar
von Seckendorff, V. and O'Neill, H.St.C. (1993) An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273, and 1423 K and 1.6 GPa. Contrib. Mineral. Petrol., 113, 196207.CrossRefGoogle Scholar
Woodland, A.B. (1998) The orthorhombic to high-P monoclinic phase transition in Mg/Fe pyroxenes: can it produce a seismic discontinuity?. Geophys. Res. Lett., 25, 1241–4.CrossRefGoogle Scholar
Woodland, A.B. and Angel, R.J. (1997) Reversal of the orthoferrosilite– high-P clinoferrosilite transition, a phase diagram for FeSiO3 and implications for the mineralogy of the Earth's upper mantle. Eur. J. Mineral., 9, 245–54.CrossRefGoogle Scholar
Woodland, A.B., McCammon, C. and Angel, R.J. (1997) Intersite partitioning of Mg and Fe in Ca-free highpressure C2/c clinopyroxene. Amer. Mineral., 82, 923–30.CrossRefGoogle Scholar