Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:38:16.031Z Has data issue: false hasContentIssue false

Incorporation of impurities in tridymites from a used silica brick

Published online by Cambridge University Press:  05 July 2018

H. Schneider
Affiliation:
Forschungsinstitut der Feuerfest-Industrie, An der Elisabethkirche 27, 5300 Bonn 1, Germany (FRG)
K. Wohlleben
Affiliation:
Forschungsinstitut der Feuerfest-Industrie, An der Elisabethkirche 27, 5300 Bonn 1, Germany (FRG)
A. Majdic
Affiliation:
Forschungsinstitut der Feuerfest-Industrie, An der Elisabethkirche 27, 5300 Bonn 1, Germany (FRG)

Summary

The incorporation of impurities in tridymites taken from a used silica brick have been studied by means of a high-resolution microprobe, X-ray fluorescence, X-ray diffractometry, and optical microscopy. The bulk impurity content of the brick changes strongly from the hot zone (4.7 wt%) to the colder part of the brick (7.6 wt%), indicating material transport along the temperature gradient. The transport medium for migration processes is probably a melt occurring in narrow veins between large tridymite crystals at high temperatures. The average impurity contents of homogeneous tridymite single crystals are 0.49 wt% in the hot zone of the brick and 0.81 wt% in the cold zone. Al2O3, TiO2, and Na2O are main impurity constituents; the tridymites do not contain significant amounts of Fe2O3 or CaO. The a parameters of tridymites decrease by about 0.26% from 4.9837 Å to 4.9709 Å from the hot zone to the cold zone of the brick and the c dimension shows a smaller decrease (0.11 %) from 8.2023 Å to 8.1933 Å.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buerger, (M. J.), 1954. Am. Mineral. 39, 600-14.Google Scholar
Dollase, (W. A.), 1967. Acta Cryst. 23, 617-23.CrossRefGoogle Scholar
Dollase, (W. A.) and Baur, (W. H.), 1976. Am. Mineral. 61, 971–8.Google Scholar
Fenner, (C. N.), 1913. Am. J. Sci. 36, 331–84.CrossRefGoogle Scholar
Flörke, (O. W.), 1955. Bet. DKG, 32, 369-81.Google Scholar
Flörke, (O. W.) 1956. Naturwiss. 43, 419-20.CrossRefGoogle Scholar
Flörke, (O. W.) 1966. Krist. u. Techn. 1, 405-10.CrossRefGoogle Scholar
Flörke, (O. W.) 1967. Fortschr. Miner. 44, 181-230.Google Scholar
Gibbs, (R. E.), 1927. Proc. R. Soc. London, A113, 35∼-68.Google Scholar
Hill, (V. G.) and Roy, (R.), 1958. Trans. Brit. Ceram. Soc. 57, 496-510.Google Scholar
Kato, (K.) and Nakui, (A.), 1976. Acta Cryst. B 32, 2486-91.Google Scholar
Konnert, (J. H.) and Appleman, (D. E.), 1975. Geol. Soc. Am. Abstracts with Programs, 7, 1151.Google Scholar
Konopicky, (K.) and Patzak, (J.), 1962. Sprechsaal, 95, 279-85.Google Scholar
Konopicky, (K.) Lepère, (K. E.), Routschka, (G.), and Thoenes, (H. W.), (1968). Tonind. Ztg. 92, 41-50.Google Scholar
Lukesh, (J.) and Buerger, (M. J.), 1942. Am. Mineral. 27, 143-4.Google Scholar
Mason, (B.), 1953. Ibid. 38, 866-7.Google Scholar
Patzak, (J.) and Konopicky, (K.), 1962. Ber. DKG, 39, 168-74Google Scholar
Mason, (B.) Patzak, (J.) 1972. Forschungsbericht Land NRWNr. 2275, Westdeutscher Verlag Köln und Opladen.Google Scholar
Rockett, (T. J.), 1963. Ph.D. Thesis, Ohio State Univ., Columbus, Ohio.Google Scholar
Schneider, (H.), Flörke, (O. W.), and Majdic, (A.), 1979. Proc. Brit. Ceram. Soc., Basis Science Section ‘Mineralogy of Ceramics’, 28, 267-79.Google Scholar
Tröger, (W. E.), 1971. Optische Bestimmung der gesteins-bildenden Miner ale.Tell I. Bestimmungstabellen. Schweizerbart, Stuttgart, p. 30.Google Scholar