Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T05:01:15.876Z Has data issue: false hasContentIssue false

Identification of mixite minerals – an SEM and Raman spectroscopic analysis

Published online by Cambridge University Press:  05 July 2018

R. L. Frost*
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia
M. Weier
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia
W. Martens
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia
L. Duong
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia

Abstract

Two mixites from Boss Tweed Mine, Tintic District, Juab County, Utah and Tin Stope, Majuba Hill, Pershing County, Nevada, USA, were analysed by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and by Raman spectroscopy. The SEM images show the mixite crystals to be elongated fibres up to 200 μm long and 2 μm wide. Detailed images of the mixite crystals show the mineral to be composed of bundles of fibres. The EDX analyses depend on the crystal studied, though the Majuba mixite gave analyses which matched the formula BiCu6(AsO4)3(OH)6.3H2O. Raman bands observed in the 880–910 cm−1 and 867–870 cm−1 regions are assigned to the AsO-stretching vibrations of (HAsO4)2− and (H2AsO4) units, whilst bands at 803 and 833 cm−1 are assigned to the stretching vibrations of uncomplexed (AsO4)3- units. Intense bands observed at 473.7 and 475.4 cm−1 are assigned to the v4 bending mode of AsO4 units. Bands observed at 386.5, 395.3 and 423.1 cm−1 are assigned to the v2 bending modes of the HAsO4 (434 and 400 cm−1) and the AsO4 groups (324 cm−1). Raman spectroscopy lends itself to the identification of minerals on host matrices and is especially useful for the identification of mixites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy Vol.V. Borates, Carbonates, Sulphates. Mineral Data Publishing, Tucson, Arizona.Google Scholar
Aruga, A. and Nakai, I. (1985) Structure of calcium-rich agardite, (Ca0.40Y0.31Fe0.09Ce0.06La0.04Nd0.01)Cu6.19 [(Aso4)2.42(HAso4)o.49](OH)6.38.3H20. Acta Crystallographica, Section C: Crystal Structure Communications, C41(2), 161 — 163.Google Scholar
Bayliss, P., Lawrence, L.J. and Watson, D. (1966) Rare copper arsenates from Dome Rock, South Australia. Australian Journal of Science, 29(5), 145146.Google Scholar
Braithwaite, R.S.W. and Knight, J.R. (1990) Rare minerals, including several new to Britain, in supergene alteration of uranium-copper-arsenic-bismuth-cobalt mineralization near Dalbeattie, south Scotland. Mineralogical Magazine, 54, 129131.CrossRefGoogle Scholar
Dietrich, J.E., Orliac, M. and Permingeat, F. (1969) Agardite, a new mineral species and the chlorotile problem. Bulletin de la Societé Francaise de Mineralogie et de Cristallographie, 92, 420434.Google Scholar
Dunin-Barkovskaya, E.A. (1976) Arsenates. Hydrous arsenates. Mixite (Cu12Bi[(AsO4)6(OH)9].9H2O). Miner. Uzb., 3, 2526.Google Scholar
Emsley, J. (1980) Very strong hydrogen bonding. Chemical Society Reviews, 9, 91124.CrossRefGoogle Scholar
Frost, R.L. (2003) Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 59A, 11951204.CrossRefGoogle ScholarPubMed
Frost, R.L. and Kloprogge, J.T. (2003) Raman spectroscopy of some complex arsenate minerals -implications for soil remediation. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 59A, 27972804.CrossRefGoogle ScholarPubMed
Frost, R.L., Crane, M., Williams, P.A. and Kloprogge, J.T. (2003a) Isomorphic substitution in vanadinite [Pb5(VO4)3Cl] — a Raman spectroscopic study. Journal of Raman Spectroscopy, 34, 214220.CrossRefGoogle Scholar
Frost, R.L., Duong, L. and Martens, W. (20036) Molecular assembly in secondary minerals -Raman spectroscopy of the arthurite group species arthurite and whitmoreite. Neues Jahrbuch für Mineralogie, Monatshefte, 223240.Google Scholar
Frost, R.L., Williams, P.A., Kloprogge, J.T. and Martens, W. (2003c) Raman spectroscopy of the copper chloride minerals nantokite, eriochalcite and claringbullite - implications for copper corrosion. Neues Jahrbuch für Mineralogie, Monatshefte, 433445.Google Scholar
Hess, H. (1983) The crystal structure of chlorotile, SECu6(AsO4)3(OH)6.3H2O (SE = rare earth metals). Neues Jahrbuch für Mineralogie, Monatshefte, 385392.Google Scholar
Krause, W., Bernhardt, H.J., Blass, G., Effenberger, H. and Graf, H.W. (1997) Hechtsbergite, Bi2O(OH)(VO4), a new mineral from the Black Forest, Germany. Neues Jahrbuch für Mineralogie, Monatshefte, 271287.Google Scholar
Libowitsky, E. (1999) Correlation of the O-H stretching frequencies and the O-H…H hydrogen bond lengths in minerals. Monatschefte für Chemie, 130, 10471049.CrossRefGoogle Scholar
Lutz, H. (1995) Hydroxide ions in condensed materials — correlation of spectroscopic and structural data. Structure and Bonding (Berlin, Germany), 82, 85103.Google Scholar
Martens, W., Frost, R.L., Kloprogge, J.T. and Williams, P.A. (2003a) Raman spectroscopic study of the basic copper sulphates — implications for copper corrosion and “bronze disease”. Journal of Raman Spectroscopy, 34, 145151CrossRefGoogle Scholar
Martens, W.N., Frost, R.L. and Williams, P.A. (20036) The basic copper phosphate minerals pseudomala-chite, ludjibaite and reichenbachite: An infrared emission and Raman spectroscopic study. Neues Jahrbuch für Mineralogie, Monatshefte, 337362.Google Scholar
Mereiter, K. and Preisinger, A. (1986) Kristall-strukturdaten der wismutminerale atelestit, mixit und pucherit. Anzeiger der Osterreichischen Akademie der Wissenschaften, math.-natuwiss. Klasse, 123, 7981.Google Scholar
Mikenda, W. (1986) Stretching frequency versus bond distance correlation of O-D(H)…Y (Y = N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates. Journal of Molecular Structure, 147, 115.CrossRefGoogle Scholar
Miletich, R., Zemann, J. and Nowak, M. (1997) Reversible hydration in synthetic mixite, BiCu6(OH)6(AsO4)3.nH2O (n≤3): hydration kinetics and crystal chemistry. Physics and Chemistry of Minerals, 24, 411422.CrossRefGoogle Scholar
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998a) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochimica et Gosmochimica Acta, 62, 32853300.CrossRefGoogle Scholar
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (19986) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochimica et Cosmochimica Acta, 62, 34993514.CrossRefGoogle Scholar
Novak, A. (1974) Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Structure and Bonding (Berlin), 18, 177216.Google Scholar
Olmi, F., Sabelli, C. and Brizzi, G. (1988) Agardite-(Y), gysinite-(Nd) and other rare minerals from Sardinia. Mineralogical Record, 19, 305310.Google Scholar
Ross, S.D. (1972) Inorganic Infrared and Raman Spectra. European Chemistry Series, McGraw-Hill, London, 414 pp.Google Scholar
Siebert, H. (1954) Force constants and chemical structure. V. The structure of oxygen acids. Zeitschrift für anorganische und allgemeine Chemie, 275, 225–40.CrossRefGoogle Scholar
Vansant, F.K. and Van der Veken, B.J. (1973) Vibrational analysis of arsenic acid and its anions. II. Normal coordinate analysis. Journal of Molecular Structure, 15, 439444.CrossRefGoogle Scholar
Vansant, F.K., Van der Veken, B.J. and Desseyn, H.O. (1973) Vibrational analysis of arsenic acid and its anions. I. Description of the Raman spectra. Journal of Molecular Structure, 15, 425437.CrossRefGoogle Scholar
Walenta, K. (1960) Chlorotile and mixite. Neues Jahrbuch für Mineralogie, Monatshefte, 223236.Google Scholar