Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T08:44:48.686Z Has data issue: false hasContentIssue false

The hydrothermal Waterberg platinum deposit, Mookgophong (Naboomspruit), South Africa. Part II: Quartz chemistry, fluid inclusions and geochronology

Published online by Cambridge University Press:  12 April 2018

Alfons M. van den Kerkhof*
Affiliation:
Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Goldschmidtstrasse 1–3, D-37077 Göttingen, Germany
Graciela M. Sosa
Affiliation:
Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Goldschmidtstrasse 1–3, D-37077 Göttingen, Germany
Thomas Oberthür
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, Germany
Frank Melcher
Affiliation:
Institute of Geology and Economic Geology, University of Leoben, Peter-Tunner-Straße 5, A-8700 Leoben, Austria
Tobias Fusswinkel
Affiliation:
Institute of Applied Mineralogy and Economic Geology, RWTH Aachen University, Wüllnerstraße 2, D-52062 Aachen, Germany
Andreas Kronz
Affiliation:
Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Goldschmidtstrasse 1–3, D-37077 Göttingen, Germany
Klaus Simon
Affiliation:
Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Goldschmidtstrasse 1–3, D-37077 Göttingen, Germany
István Dunkl
Affiliation:
Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Goldschmidtstrasse 1–3, D-37077 Göttingen, Germany
*

Abstract

The historic Waterberg platinum deposit, ~15 km WNW of Mookgophong (formerly Naboomspruit), Limpopo Province, South Africa, is a rare fault-bound hydrothermal vein-type quartz-hematite-platinum-group mineralization. As a continuation of the geochemistry and ore mineralogy studies (Part I, Oberthür et al., 2018), this paper concentrates on the ore-bearing quartz and on the age constraints of ore formation. The state-of-the-art methods used include cathodoluminescence microscopy, electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of trace elements, stable isotope (δ18O) analysis and fluid-inclusion studies. U-Pb and (U-Th)/He radiometric age determination gave ages of 900–1075 Ma suggesting platinum-group element (PGE) mineralization as a result of upwelling fluids with connection to the Bushveld complex during Kibaran tectonic movements along the Thabazimbi–Murchison Lineament. Felsic fragments containing Qtz-1 were cemented by different quartz generations (Qtz-2 to Qtz-4) and enable the characterization of the changing physicochemical parameters during multistage mineralization and cooling. The PGE minerals are associated with the earliest hydrothermal stage represented by botryoidal radial-fibrous quartz aggregates (Qtz-2a) which formed on brecciated felsite. The other quartz types are essentially barren. Cathodoluminescence studies of quartz indicate very high Al, Fe and K concentrations as confirmed by EPMA and LA-ICP-MS, whereas Ti is always very low. The varying Al concentrations in the quartz mainly indicate pH fluctuations, the high Fe3+ points at high oxygen fugacity. Micro-inclusions of iron oxide are associated with Pt ore (Fe, Pt, Pd, Au, W, Sb, As), rutile, kaolinite and muscovite. The hydrothermal activity must have been characterized by low saline (<10 wt%) H2O–NaCl solutions. These fluids mixed with original high-saline NaCl ± CaCl2 ± CO2 brines in the brecciated felsite (Qtz-1). According to the quartz-hematite geothermometer the ore depositional temperatures were ~370–330°C (Qtz-2a), whereas the successive quartz veins formed during cooling towards ~295°C. The transport of PGE must have been facilitated by strongly oxidizing chloride complexes of relatively low salinity and moderate acidity.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Brian O'Driscoll

This paper is published as part of a thematic set in memory of Professor Hazel M. Prichard

References

Armitage, P.E.B., McDonald, I. and Tredoux, M. (2007) A geological investigation of the Waterberg hydrothermal platinum deposit, Mookgophong, Limpopo Province, South Africa Applied Earth Science (Transactions of the Institution of Mining and Metallurgy, Section B), 116, B113–129.Google Scholar
Bähr, R., Lippolt, H.J. and Wernicke, R.S. (1994) Temperature-induced 4He degassing of specularite and botryoidal hematite: a 4He retentivity study. Journal of Geophysical. Research, 99(B9), 1769517707.Google Scholar
Balout, H., Roques, J., Gautheron, C., Tassan-Got, L., Mbongo-Djimbi, D. (2017) Helium diffusion in pure hematite (α-Fe2O3) for thermochronometric applications: A theoretical multi-scale study. Computational and Theoretical Chemistry, 1099, 2128.Google Scholar
Board, W.S., Frimmel, H.E. and Armstrong, R.A. (2005) Pan-African tectonism in the Western Maud Belt: P-T-t path for high-grade gneisses in the H.U. Sverdrupfjella, East Antarctica. Journal of Petrology, 46(4), 671699.Google Scholar
Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. Pp. 117130 in: Fluid Inclusions in Minerals, Methods and Applications (De Vivo, B. and Frezzotti, M. L., editors).Virginia Tech, Blacksburg, VA, USA.Google Scholar
Cabral, A.R., Lehmann, B., Tupinambá, M., Schlosser, S., Kwitko-Ribeiro, R. and de Abreu, F. (2009) The platiniferous Au-Pd belt of Minas Gerais, Brazil, and genesis of its botryoidal Pt-Pd aggregates. Economic Geology, 104(8), 12651276.Google Scholar
Cabral, A.R., Lehmann, B. and Brauns, M. (2011) Low-temperature Pt-Pd mineralisation: Examples from Brazil. Mineralogical Magazine, 75(3), 609.Google Scholar
Ciobanu, C.L., Wade, B.P., Cook, N.J., Schmidt Mumm, A. and Giles, D. (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Research, 238, 129147.Google Scholar
Danišík, M., Evans, N.J., Ramanaidou, E.R., Mc-Donald, B.R., Mayers, C. and McInnes, B.I.A. (2013) (U-Th)/He chronology of the Robe River channel iron deposits, Hamersley Province,Western Australia. Chemical Geology, 354, 150162.Google Scholar
Distler, V.V., Yudovskaya, M.A., Prokof'yev, V.Y., Sluzhenikin, S.F., Mokhov, A.V. and Mun, Y.A. (2000) Hydrothermal platinum mineralization of the Waterberg Deposit, Transvaal, South Africa. Geology of Ore Deposits, 42(4), 328339.Google Scholar
De Kock, M.O., Ernst, R., Söderlund, U., Jourdan, F., Hofmann, A., Le Gall, B., Bertrand, H., Chisonga, B.C., Beukes, N., Rajesh, H.M., Moseki, L.M., Fuchs, R. (2014) Dykes of the 1.11 Ga Umkondo LIP, Southern Africa: Clues to acomplex plumbing system. Precambrian Research, 249, 129143.Google Scholar
Eckstrand, O.R. (2005) Ni–Cu–Cr–PGE mineralization types: distribution and classification. Pp. 487494 in: Exploration for Platinum-Group Elements Deposits (Mungall, J.E., editor). Mineralogical Association of Canada – Short Course Series, Vol. 35.Google Scholar
Evenson, N.S., Reiners, P.W., Spencer, J. and Shuster, D.L. (2014) Hematite and Mn oxide (U-Th)/He dates from the Buckskin-Rawhide detachment system, western Arizona: Constraining the timing of mineralization and hematite (U-Th)/He systematics: American Journal of Science, 314, 13731435.Google Scholar
Gammons, C.H. (1995) Experimental investigation of the hydrothermal geochemistry of platinum and palladium: IV. The stoichiometry of Pt(IV) and Pd (II) chloride complexes at 100 to 300°C. Geochimica et Cosmochimica Acta, 59, 16651668.Google Scholar
Goldstein, R.H. and Reynolds, T.J. (1994) Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM, Short Course 31. Society for Sedimentary Geology, Tulsa, USA, 199 pp.Google Scholar
Good, N. and de Wit, M. (1997) The Thabazimbi-Murchison Lineament of the Kaapvaal Craton, South Africa: 2700 Ma of episodic deformation. Journal of the Geological Society, 54(1), 93.Google Scholar
Hanley, J.J., Pettke, Th., Mungall, J.E. and Spooner, E.T.C. (2005) The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 69, 25932611.Google Scholar
Herrington, R.J. and Wilkinson, J.J. (1993) Colloidal gold and silica in mesothermal vein systems. Geology, 21, 539542.Google Scholar
Huang, R. and Audétat, A. (2012) The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochimica et Cosmochimica Acta, 84, 7589.Google Scholar
Jaireth, S. (1992) The calculated solubility of platinum and gold in oxygen-saturated fluids and the genesis of platinum-palladium and gold mineralization in the unconformity-related uranium deposits. Mineralium Deposita, 27, 4254.Google Scholar
Kronz, A., Van den Kerkhof, A.M. and Müller, A. (2012) Analysis of low element concentrations in quartz by electron microprobe. Pp. 191217 in: Quartz, Deposits, Mineralogy and Analytics (Götze, J. and Möckel, R.). Springer.Google Scholar
Lüders, V., Romer, R.L., Cabral, A.R., Schmidt, Chr., Banks, D.A. and Schneider, J. (2005) Genesis of itabirite-hosted Au–Pd–Pt-bearing hematite-(quartz) veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U–Pb systematics. Mineralium Deposita, 40, 289306.Google Scholar
Master, S., Glynn, S.M. and Wiedenbeck, M. (2017) Provenance of the Neoproterozoic Sijarira Group, Zimbabwe – An Antarctica connection? Abstract Volume, 9th Igneous and Metamorphic Studies Group Meeting, Muldersdrift, Gauteng, South Africa.Google Scholar
McDonald, I. and Tredoux, M. (2005) The history of the Waterberg deposit: why South Africa's first platinum mine failed. Applied Earth Sciences (Transactions of the Institution of Mining and Metallurgy, Section B), 114, B264–272.Google Scholar
McDonald, I., Tredoux, M. and Vaughan, D.J. (1995) Platinum mineralization in quartz veins near Naboomspruit, central Transvaal. South African Journal of Geology, 98, 168–75.Google Scholar
McDonald, I., Ohnenstetter, D., Rowe, J.P., Tredoux, M., Pattrick, R.A.D. and Vaughan, D.J. (1999) Platinum precipitation in the Waterberg deposit, Naboomspruit, South Africa. South African Journal of Geology, 102, 184191.Google Scholar
Müller, A. (2000) Cathodoluminescence and Characterization of Defect Structures in Quartz with Applications to the Study of Granitic Rocks. PhD thesis, University of Göttingen, Germany, 229 pp.Google Scholar
Mungall, J.E. and Naldrett, A.J. (2008) Ore Deposits of the Platinum-Group Elements. Elements, 4, 253258.Google Scholar
Neuser, R.D., Bruhn, F., Götze, J., Habermann, D. and Richter, D.K. (1995) Cathodoluminescence: method and application. Zentralblatt für Geologie und Paläontologie, Teil I, H.1/2, 287306.Google Scholar
Oberthür, Th., Melcher, F., Fußwinkel, T., Van den Kerkhof, A.M. and Sosa, G.M. (2018) The hydrothermal Waterberg platinum deposit, Mookgophong (Naboomspruit), South Africa. Part I: Geochemistry and ore mineralogy. Mineralogical Magazine, 82, 725–749Google Scholar
Oriolo, S. and Becker, Th. (2018) The Kalahari Craton, Southern Africa: from Archean crustal evolution to Gondwana amalgamation. Pp. 133159 in: Geology of Southwest Gondwana, Regional Geology Reviews (Siegesmund, S. et al. editors) Springer International Publishing AG.Google Scholar
Prokof'yev, V.Y., Distler, V.V. and Yudovskaya, M.A. (2001) Formation conditions of hydrothermal platinum mineralisation of the Waterberg deposit (Transvaal, South Africa). ECROFI XVI, Porto, Abstr Volume, 377378.Google Scholar
Rocholl, A.B., Simon, K., Jochum, K.P., Bruhn, F., Gehann, R., Kramar, U., Luecke, W., Molzahn, M., Pernicka, E., Seufert, M., Spettel, B. and Stummeier, J. (1997) Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostandards Newsletter, 06, 101114.Google Scholar
Rusk, B.G., Lowers, H.A. and Reed, M. (2008) Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insight into vein formation. Geology, 36(7), 547550.CrossRefGoogle Scholar
Shepherd, T.J. (1981) Temperature-programmable heating-freezing stage for microthermometric analysis of fluid inclusions. Economic Geology, 76, 12441247.Google Scholar
Stevens-Kalceff, M.A. (2009) Cathodoluminescence microcharacterization of point defects in α-quartz. Mineralogical Magazine, 73(4), 585605.Google Scholar
Tatzel, M., Dunkl, I. and von Eynatten, H. (2017) Provenance of Palaeo-Rhine sediments from zircon thermochronology, geochemistry, U/Pb dating and heavy mineral assemblages. Basin Research, 29, 396417.Google Scholar
Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K. and Lanzirotti, A. (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160, 743759.Google Scholar
Van den Kerkhof, A.M. and Hein, U.F. (2001) Fluid inclusion petrography. Lithos, 55, 2747.Google Scholar
Van den Kerkhof, A.M. and Sosa, G.M. (2009) Fluid inclusion and cathodoluminescence studies in quartz from the Waterberg Platinum Deposit (South Africa). BGR Berichte zur Lagerstätten – und Rohstoffforschung, 62, 17 + Appendices.Google Scholar
Wagner, P.A. (1929 a) The Platinum Deposits and Mines of South Africa. Oliver & Boyd, Edinburgh, 257263.Google Scholar
Wagner, P.A. (1929 b) Economic Geology – Platinum Metals. In: Handbuch der Regionalen Geologie (Steinmann, G. and Wilckens, O., editors). The Union of South Africa. Carl Winters Universitätsbuchhandlung, Heidelberg.Google Scholar
Wagner, P.A. and Trevor, T.G. (1923) Platinum in the Waterberg district – a description of the recently discovered Transvaal deposits. South African Journal of Industries, 6, 577597.Google Scholar
Wark, D.A. and Watson, E.B. (2006) The TitaniQ: a titanium-in-quartz geo-thermometer. Contributions to Mineralogy and Petrology, 152, 743754.Google Scholar
Wiechert, U. and Hoefs, J. (1995) An excimer laser-based micro analytical preparation technique for in-situ oxygen isotope analysis of silicate and oxide minerals. Geochimica et Cosmochimica Acta, 59, 40934101.Google Scholar
Wilde, A.R. (2005) Descriptive ore deposit models: Hydrothermal and supergene Pt & Pd deposits. Pp. 145161 in: Exploration for Platinum-Group Elements Deposits (Mungall, J.E., editor). Mineralogical Association of Canada – Short Course Series, Vol. 35.Google Scholar
Wilkinson, J.J. (2001) Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229272.Google Scholar
Williamson, B.J., Wilkinson, J.J., Luckham, P.F. and Stanley, C.J. (2002) Formation of coagulated colloidal silica in high-temperature mineralizing fluids. Mineralogical Magazine, 66, 547553.Google Scholar
Zheng, Y.-F and Simon, K. (1991) Oxygen isotope fractionation in hematite and magnetite: A theoretical calculation and application to geothermometry of metamorphic iron formations. European Journal of Mineralogy, 3, 877886.Google Scholar
Zwart, E.W. and Touret, J.L.R. (1994) Melting behaviour and composition of aqueous fluid inclusions in fluorite and calcite: applications within the system H2O-CaCl2-NaCl. European Journal of Mineralogy, 6, 773786.Google Scholar