Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T22:03:14.621Z Has data issue: false hasContentIssue false

Holtite and dumortierite from the Szklary Pegmatite, Lower Silesia, Poland

Published online by Cambridge University Press:  05 July 2018

A. Pieczka
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH – University ofScience and Technology, Mickiewicza 30, 30-059 Kraków, Poland
E. S. Grew
Affiliation:
Department of Earth Sciences, University of Maine, 5790 Bryand Global Sciences Center, Orono, Maine 04469-5790, USA
L. A. Groat
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia 6339 Stores Road, Vancouver, British Columbia V6T IZ4, Canada
R. J. Evans
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia 6339 Stores Road, Vancouver, British Columbia V6T IZ4, Canada

Abstract

The Szklary holtite is represented by three compositional varieties: (1) Ta-bearing (up to 14.66 wt.% Ta2O5), which forms homogeneous crystals and cores within zoned crystals; (2) Ti-bearing (up to 3.82 wt.% TiO2), found as small domains within the core; and (3) Nb-bearing (up to 5.30 wt.% Nb2O5,) forming the rims of zoned crystals. All three varieties show variable Sb+As content, reaching 19.18 wt.% Sb2O3 (0.87 Sb a.p.f.u.) and 3.30 wt.% As2O3 (0.22 As a.p.f.u.) in zoned Ta-bearing holtite, which constitutes the largest Sb+As content reported for the mineral. The zoning in holtite is a result of Ta-Nb fractionation in the parental pegmatite-forming melt together with contamination of the relatively thin Szklary dyke by Fe, Mg and Ti. Holtite and the As- and Sb-bearing dumortierite, which in places overgrows the youngest Nb-bearing zone, suggest the following crystallization sequence: Ta-bearing holtite → Ti-bearing holtite → Nb-bearing holtite → As- and Sb-bearing, (Ta,Nb,Ti)-poor dumortierite → As- and Sb-dominant, (Ta,Nb,Ti)-free dumortierite-like mineral (16.81 wt.% As2O3 and 10.23 wt.% Sb2O3) with (As+Sb) > Si. The last phase is potentially a new mineral species. Al6□☐(Sb,As)3O15, or Al52B(Sb,As)3O12(OH)3, belonging to the dumortierite group. The Szklary holtite shows no evidence of clustering of compositions around ‘holtite I’ and ‘holtite II'. Instead, the substitutions of Si4+ by Sb3++As3+ at the Si/Sb sites and of Ta5+ by Nb5+ or Ti4+ at the Al(l) site suggest possible solid solutions between: (1) (Sb,As)-poor and (Sb,As)-rich holtite; (2) dumortierite and the unnamed (As+Sb)-dominant dumortierite-like mineral; and (3) Ti-bearing dumortierite and holtite. i.e. our data provide further evidence for miscibility between holtite and dumortierite, but leave open the question of defining the distinction between them. The Szklary holtite crystallized from the melt along with other primary Ta-Nb-(Ti) minerals such as columbite-(Mn), tantalite-(Mn), stibiotantalite and stibiocolumbite as the availability of Ta decreased. The origin of the parental melt can be related to anatexis in the adjacent Sowie Mountains complex, leading to widespread migmatization and metamorphic segregation in pelitic-psammitic sediments metamorphosed at ∼390—380 Ma.

Type
CNMNC Newsletter 8
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, V.D., Griffen, D.T. and Martin, T.J. (1986) Crystal chemistry ofs ome Fe- and Ti-poor dumortierites. American Mineralogist, 71, 786-794.Google Scholar
Brady, J.B. and Cherniak, D.J. (2010) Diffusion in minerals: An overview ofpublished experimental diffusion data. Pp. 899-920 in: Diffusion in Minerals and Melts (Zhang, Y. and Cherniak, D.J., editors). Reviews in Mineralogy & Geochemistry, 72, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Cempírek, J., Novák, M., Dolníček, Z., Kotková, J. and Škoda, R. (2010) Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic. American Mineralogist, 95, 1533-1547.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 2005-2026.CrossRefGoogle Scholar
Franz, G. and Morteani, G. (1984) The formation of chrysoberyl in metamorphosed pegmatites. Journal of Petrology, 25, 27-52.CrossRefGoogle Scholar
Fuchs, Y., Ertl, A., Hughes, J.M., Prowatke, S., Brandstätter, F. and Schuster, R. (2005) Dumortierite from the Gföhl unit, Lower Austria. European Journal of Mineralogy, 17, 173-183.CrossRefGoogle Scholar
Grew, E.S., Graetsch, H., Pöter, B., Yates, M.G., Buick, I., Bernhardt, H.-J., Schreyer, W., Werding, G., Carson, C.J. and Clarke, G.L. (2008) Boralsilite, Al16B6Si2O37, and “boron-mullite”: compositional variations and associated phases in experiment and nature. American Mineralogist, 93, 283-299.CrossRefGoogle Scholar
Groat, L.A., Grew, E.S., Evans, R.J., Pieczka, A. and Ercit, T.S. (2009) The crystal chemistry ofholtite. Mineralogical Magazine, 73, 1033-1050.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717-728.CrossRefGoogle Scholar
Hoskins, B.F., Mumme, W.G. and Pryce, M.W. (1989) Holtite, (Si2.25Sb0.75)B[Al6(Al0.43Ta0.27ܭ0.30) O15(O,OH)2.25]: crystal structure and crystal chemistry. Mineralogical Magazine, 53, 457-463.CrossRefGoogle Scholar
Huijsmans, P.P., Barton, M. and van Bergen, M.J. (1982) A pegmatite containing Fe-rich grandidierite, Ti-rich dumortierite and tourmaline from the Precambrian, high-grade metamorphic complex of Rogaland, S.W. Norway. Neues Jahrbuch für Mineralogie Abhandlungen, 143, 249-261.Google Scholar
Kazantsev, S.S., Pushcharovsky, D.Yu., Pasero, M., Merlino, S., Zubkova, N.V., Kabalov, Yu.K. and Voloshin, A.V. (2005) Crystal structure of holtite I. Crystallography Reports, 50, 42-47.CrossRefGoogle Scholar
Locock, A.J., Piilonen, P., Ercit, T.S. and Rowe, R. (2006) New mineral names. American Mineralogist, 91, 216-224.CrossRefGoogle Scholar
Majerowicz, A. and Pin, Ch. (1986) Preliminary trace element evidence for an oceanic depleted mantle origin ofthe ślęża ophiolitic complex SW Poland. Mineralogia Polonica, 17, 12-22.Google Scholar
Michalik, R. (2000) Gold in the serpentinite weathering cover ofthe Szklary massif, Fore-Sudetic Block, SW Poland. Geologia Sudetica, 33, 143-150.Google Scholar
Niśkiewicz, J. (1967) Geological structure ofthe Szklary Massif(Lower Silesia). Journal of Polish Geological Society, 37, 387-414.(in Polish).Google Scholar
Oliver, G.J.H., Corfu, F. and Krogh, T.E. (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society, 150, 355-369.CrossRefGoogle Scholar
Pieczka, A. (2000) A rare mineral-bearing pegmatite from the Szklary serpentinite massif, the Fore-Sudetic Block, SW Poland. Geologia Sudetica, 33, 23-31.Google Scholar
Pieczka, A. (2007) Blue dravite from the Szklary pegmatite, Lower Silesia, Poland. Mineralogia Polonica, 32, 209-218.CrossRefGoogle Scholar
Pieczka, A. (2010) Primary Nb-Ta minerals in the Szklary pegmatite, Poland: new insights into controls ofcrystal chemistry and crystallization sequences. American Mineralogist, 95, 1478-1492.CrossRefGoogle Scholar
Pieczka, A. and Kraczka, J. (1996) X-ray and Mössbauer study ofblack tourmalines (schorls) from Szklary (Lower Silesia, Poland). Mineralogia Polonica, 27, 33-40.Google Scholar
Pieczka, A. and Marszałek, M. (1996) Holtite – the first occurrence in Poland. Mineralogia Polonica, 27, 3-8.Google Scholar
Pouchou, J.L. and Pichor, F. (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104-106 in: Microbeam Analysis. San Francisco Press, San Francisco, California, USA.Google Scholar
Pryce, M.W. (1971) Holtite: a new mineral allied to dumortierite. Mineralogical Magazine, 38, 21-25.CrossRefGoogle Scholar
Sorbier, L., Rosenberg, E. and Merlet, C. (2004) Microanalysis of porous materials. Microscopy and Microanalysis, 10, 745-752.CrossRefGoogle ScholarPubMed
Timmermann, H., Parrish, R.R., Noble, S.R. and Kryza, R. (2000) New U-Pb monazite and zircon data from the Sudetes Mountains in SW Poland; evidence for a single-cycle Variscan Orogeny. Journal of the Geological Society, 157, 265-268.CrossRefGoogle Scholar
van Breemen, O., Bowes, D.R., Aftalion, M. and Żelaźniewicz, A. (1988) Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Journal of the Polish Geological Society, 58, 3-10.Google Scholar
Voloshin, A.V. and Pakhomovskiy, Ya.A. (1988) Mineralogy of Tantalum and Niobium in Rare-Metal Pegmatites. Nauka, Leningrad, Russia (in Russian).Google Scholar
Voloshin, A.V., Gordienko, V.V., Gelman, Ye.M., Zorina, M.L., Yelina, N.A., Kul’chitskaya, K.A., Men’shikov, Yu.P., Polezhayeva, L.I., Ryzhova, P.I., Sokolov, P.B. and Utochkin, G.I. (1977) Holtite (first find in SSSR) and its relationship with other tantalum minerals in rare-metal pegmatites. Novyye Mineraly i Piervyye Nakhodki v SSSR, 106, 337-347.(in Russian).Google Scholar
Voloshin, A.V., Pakhomovskiy, Ya.A. and Zalkind, O.A. (1987) An investigation ofthe chemical composition and IR-spectroscopy ofh oltite. In: Miner a l‘nyye Assotsiatsii i Mineraly Magmaticheskikh Kompleksov Kol’skogo Polyostrova. Apatity, Kol’skiy Filial AN SSSR, 14–34 (in Russian).Google Scholar
Żelaźniewicz, A. (1987) Tectonic and metamorphic evolution ofthe Góry Sowie, Sudetes Mts, SW Poland. Journal of the Polish Geological Society, 57, 203-348.(in Polish, summary in English).Google Scholar
Żelaźniewicz, A. (1990) Deformation and metamorphism in the Góry Sowie gneiss complex, Sudetes, SW Poland. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 179, 129-157.Google Scholar
Supplementary material: File

Pieczka et al. supplementary material

Table of EMP analyses

Download Pieczka et al. supplementary material(File)
File 287.7 KB