Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T18:32:09.476Z Has data issue: false hasContentIssue false

Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging

Published online by Cambridge University Press:  05 July 2018

K. Lehmann*
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH-3012 Bern, Switzerland
A. Berger
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH-3012 Bern, Switzerland
T. Götte
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH-3012 Bern, Switzerland
K. Ramseyer
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH-3012 Bern, Switzerland
M. Wiedenbeck
Affiliation:
Helmholtz Centre Potsdam German Research Centre for Geosciences, Telegrafenberg C161, D-14473 Potsdam, Germany
*

Abstract

Authigenic quartz overgrowths and hydrothermal quartz crystals from locations in Oman and Switzerland have been investigated with SIMS, EPMA, SEM-CL and SEM-CC. All techniques reveal similar zonation patterns with SEM-CL having the best resolution followed by SEM-CC, EPMA and finally SIMS. The observed zonations reflect chemical and/or physical changes during growth in the precipitation environment or disequilibrium precipitation at the crystal surface (i.e. sectoral and intrasectoral zonation). Based on the total Al content, two types of authigenic quartz are distinguishable. When the Al concentration is <500 μg g–1 the predominant CL emission is at ~630 nm; in such quartzes, SEM-CL and SEM-CC are directly correlated, and signal intensities drop as a function of increasing Al concentration. In contrast, authigenic quartz with Al concentrations between 500 μg g–1 and 1000 μg g–1 has CL emission maxima at both ~630 nm and ~380—400 nm, at which point the panchromatic SEM-CL and SEM-CC intensities become decoupled.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

present address: Geological Institute, University of Copenhagen, Øster Voldgade 10, DK-1350 Kabenhavn, Denmark.

present address: Institute of Geology, Mineralogy und Geophysics, Ruhr-Universitat Bochum, Universitats- strasse 150, D-44801 Bochum, Germany.

References

Allan, M.M. and Yardley, B.W. (2007) Tracking meteoric infiltration into a magmatic-hydrothermal system: A cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chemical Geology, 240, 343—360.CrossRefGoogle Scholar
Bambauer, H.U. (1961) Spurenelementgehalte und g-Farbzentren in Quarzen aus Zerrkluften der Schweizer Alpen. Schweizerische mineralogische undpetrographische Mitteilungen, 41, 335—369.Google Scholar
Behrisch, R. and Eckstein, W. (2007) Introduction and Overview. Pp. 1 — 19 in: Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (R. Behrisch and W. Eckstein, editors). Topics in Applied Physics, 110, Springer Verlag, Berlin.Google Scholar
Breiter, K. and Müller, A. (2009) Evolution of rare- metal granitic magmas documented by quartz chemistry. European Journal of Mineralogy, 21, 335—346.CrossRefGoogle Scholar
Cuthbert, S.J. and Buckman, J.O. (2005) Charge contrast imaging of fine-scale microstructure and compositional variation in garnet using the environmental scanning electron microscope. American Mineralogist, 90, 701—707.CrossRefGoogle Scholar
Demars, C., Pagel, M., Deloule, E. and Blanc, P. (1996) Cathodoluminescence of quartz from sandstones: Interpretation of the UV range by determination of trace element distributions and fluid inclusion P-T-X properties in authigenic quartz. American Mineralogist, 81, 891—901.CrossRefGoogle Scholar
Fan, C.Y. (1956) Emission spectra excited by electronic and ionic impact. Physical Review, 103, 1740—1745.CrossRefGoogle Scholar
Friedlander, C. (1951) Untersuchung uber die Eignung alpiner Quarze fur piezoelektrische Zwecke. Beitrdge zur Geologie der Schweiz, Geotechnische Serie, 29, 1—98.Google Scholar
Götze, J. (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberger Forschungshefte C, 485, 128 pp.Google Scholar
Götze, J., Plötze, M. and Habermann, D. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz - a review. Mineralogy and Petrology, 71, 225—250.Google Scholar
Götze, J., Plötze, M. and Trautmann, T. (2005) Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist, 90, 13—21.CrossRefGoogle Scholar
Griffin, B.J. (2000) Charge contrast imaging of material growth and defects in environmental scanning electron microscopy - linking electron emission and cathodoluminescence. Scanning, 22, 234—242.Google ScholarPubMed
Hartmann, B.H. (1996) Diagenesis and pore-water evolution of the lower Permian Gharif Formation (Sultanate of Oman). PhD thesis, Institut fur Geologie, Universitat Bern, Bern, 238 pp.Google Scholar
Hartmann, B.H., Juhasz-Bodmr, K., Ramseyer, K. and Matter, A. (2000 a) Polyphased quartz cementation and its sources: a case study from the Upper Palaeozoic Haushi Group sandstones, Sultanate of Oman. International Association of Sedimentologists Special Publication, 29, 253—270.Google Scholar
Hartmann, B.H., Ramseyer, K. and Matter, A. (2000b) Diagenesis and pore-water evolution in Permian sandstones, Gharif Formation, Sultanate of Oman. Journal of Sedimentary Research, 70, 533—544.CrossRefGoogle Scholar
Hughes Clarke, M.W. (1988) Stratigraphy and rock unit nomenclature in the oil-producing area of interior Oman. Journal of Petroleum Geology, 11, 5—60.Google Scholar
Jourdan, A.-L., Vennemann, T.W., Mullis, J., Ramseyer, K. and Spiers, C.J. (2009) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy, 21, 219—231.CrossRefGoogle Scholar
Juhasz-Bodmr, K. (1999) Diagenesis and pore-water evolution of the Permo-Carboniferous Al Khlata Formation, Interior Oman Sedimentary Basin, Sultanate of Oman. PhD thesis, Geologisches Institut, Universitat Bern, Bern 142 pp.Google Scholar
Landtwing, M.R. and Pettke, T. (2005) Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. American Mineralogist, 90, 122—131.CrossRefGoogle Scholar
Larsen, R.B., Henderson, I., Ihlen, P.M. and Jacamon, F. (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contributions to Mineralogy and Petrology, 147, 615—628.CrossRefGoogle Scholar
Lee, M.R., Brown, D.J., Smith, C.L., Hodson, M.E., Mackenzie, M. and Hellmann, R. (2007) Characterization of mineral surfaces using FIB and TEM: A case study of naturally weathered alkali feldspars. American Mineralogist, 92, 13831394.CrossRefGoogle Scholar
Lehmann, K., Driehorst, F., Ramseyer, K., Pettke, T. and Wiedenbeck, M. (2008) Trace element uptake in quartz cement — a function of temperature or fluid characteristics? International Geological Conference, Oslo.Google Scholar
Loosveld, R.J., Bell, A. and Terken, J.M. (1996) The tectonic evolution of interior Oman. GeoArabia, 1, 28—51.Google Scholar
Monecke, T., Kempe, J. and Götze, J. (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth and Planetary Science Letters, 202, 709—724.CrossRefGoogle Scholar
Morgan, S.W. and Phillips, M.R. (2006) Gaseous scintillation detection and amplification in variable pressure scanning electron microscopy. Journal of Applied Physics, 100, 116.CrossRefGoogle Scholar
Müller, A., Seltmann, R. and Behr, H.-J. (2000) Application of cathodoluminescence to magmatic quartz in a tin granite - case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita, 35, 169—189.Google Scholar
Müller, A., Lennox, P. and Trzebski, R. (2002) Cathodoluminescence and micro-structural evidence for crystallisation and deformation processes of granites in the Eastern Lachlan Fold Belt (SE Australia). Contributions to Mineralogy and Petrology, 143, 510—524.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., van den Kerkhoff, A.M., Kronz, A. and Simon, K. (2003) Trace elements in quartz — a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy, 15, 747—763.Google Scholar
Northrup, P.A. and Reeder, R.J. (1994) Evidence for the importance of growth-surface structure to trace element incorporation in topaz. American Mineralogist, 79, 1167—1175.Google Scholar
Penniston-Dorland, S.C. (2001) Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. American Mineralogist, 86, 652—666.CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J. and Pankrath, R. (1992) Microdistribution of Al, Li and Na in a quartz: Possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77, 534—544.Google Scholar
Ramseyer, K. and Mullis, J. (1990) Factors influencing short-lived blue cathodoluminescence of alpha- quartz. American Mineralogist, 75, 791—800.Google Scholar
Robertson, K., Gauvin, R. and Finch, J. (2005) Application of charge contrast imaging in mineral characterization. Minerals Engineering, 18, 343—352.CrossRefGoogle Scholar
Ruffini, R., Borghi, A., Cossio, R., Olmi, F. and Vaggelli, G. (2002) Volcanic quartz growth zoning identified by cathodoluminescence and EPMA studies. Mikrochimica Acta, 139, 151158.CrossRefGoogle Scholar
Rusk, B.G. and Reed, M.H. (2002) Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology, 30, 727—730.2.0.CO;2>CrossRefGoogle Scholar
Rusk, B.G., Reed, M.H., Dilles, J.H. and Kent, A.J. (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91, 1300—1312.CrossRefGoogle Scholar
Rusk, B.G., Lowers, H.A. and Reed, M.H. (2008) Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36, 547—550.CrossRefGoogle Scholar
Schron, W., Schmadicke, E., Thomas, R. and Schmidt, W. (1988) Geochemische Untersuchungen an Pegmatitquarzen. Zeitschrift fiir Geologische Wissenschaften Berlin, 16, 229—244.Google Scholar
Siebers, F.B. (1986) Inhomogene Verteilung von Verunreinigungen in gezichteten und natirlichen Quarzen als Funktion der Wachstumsbedingungen und ihr Einfluss auf kristallphysikalische Eigenschaften. PhD thesis, Geowissenschaften, Ruhr-Universitat Bochum, Bochum, 133 pp.Google Scholar
Stevens-Kalceff, M.A. and Phillips, M.R. (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Physical Review B, 52, 3122—3134.Google Scholar
Visser, W. (1991) Burial and thermal history of Proterozoic source rocks in Oman. Precambrian Research, 54, 15—36.CrossRefGoogle Scholar
Wark, D.A. and Watson, E.B. (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743—754.CrossRefGoogle Scholar
Watt, G.R., Wright, P., Galloway, S. and McLean, C. (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et Cosmochimica Acta, 61, 4337—4348.CrossRefGoogle Scholar
Watt, G.R., Griffin, B.J. and Kinny, P.D. (2000) Charge contrast imaging of geological materials in the environmental scanning electron microscope. American Mineralogist, 85, 1784—1794.CrossRefGoogle Scholar
Wiedenbeck, M., Rhede, D., Lieckefett, R. and Witzki, H. (2004) Cryogenic SIMS and its applications in the earth sciences. Applied Surface Science, 231—232, 888 892.CrossRefGoogle Scholar