Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T13:13:01.190Z Has data issue: false hasContentIssue false

The geochemistry of Middle Jurassic dykes associated with the Straumsvola–Tvora alkaline plutons, Dronning Maud Land, Antarctica and their association with the Karoo large igneous province

Published online by Cambridge University Press:  05 July 2018

T. R. Riley*
Affiliation:
British Antarctic Survey, Natural Environment Research Counci l, Madingley Road, High Cross, Cambridge CB3 0ET, UK
M. L. Curtis
Affiliation:
British Antarctic Survey, Natural Environment Research Counci l, Madingley Road, High Cross, Cambridge CB3 0ET, UK
P. T. Leat
Affiliation:
British Antarctic Survey, Natural Environment Research Counci l, Madingley Road, High Cross, Cambridge CB3 0ET, UK
I. L. Millar
Affiliation:
NERC Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, UK
*

Abstract

Jurassic dykes of western Dronning Maud Land (Antarctica) form a minor component of the Karoo large igneous province. An extensive local dyke swarm intrudes Neoproterozoic gneisses and Jurassic syenite plutons on the margins of the Jutulstraumen palaeo rift in the Svedrupfjella region. The dykes were intruded in three distinct episodes (~204, ~176 and ~170 Ma). The 204 Ma dykes are overwhelminglylow-Ti, olivine tholeiites including some primitive (picritic) compositions (MgO >12 wt.%; Fe2O3 >12 wt.%; Cr >1000 ppm; Ni >600 ppm). This 204 Ma event precedes the main Karoo volcanic event by~25 Ma, so anycorrelations to the wider province are difficult to make. However, it mayrecord the earliest phase of rift activity along the Jutulstraumen. The 176 Ma dyke event is more intimately associated with the two syenite plutons. The dykes are alkaline (basanite/ tephrite) and were small-degree melts from an enriched, locallyderived source and underwent at least some degree of interaction with a syenitic contaminant. This ~176 Ma dyke event is widespread elsewhere in the Karoo (southern Africa and Dronning Maud Land). Later-stage (170 Ma) felsic (phonolite–comendite) dykes intrude the 176 Ma basanite–tephrite suite and represent the last phase of magmatic activityin the region.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, J.M., Klemd, R., Allssop, H.L., Auret, S.H. and Copperthwaite, Y.E. (1987) The geology and geochronology of the Annandagstoppane granite, western Dronning Maud Land, Antarctica. Contributions to Mineralogy and Petrology, 97, 488—496.CrossRefGoogle Scholar
Curtis, M.L., Riley, T.R., Owens, W.H., Leat, P.T. and Duncan, R.A. (2008) The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes in H.U. Sverdrupfjella, Dronning Maud Land, Antarctica. Implications for dyke swarm emplacement. Journal of Structural Geology, 30, 1429—1447.CrossRefGoogle Scholar
Eggins, S.M., Woodhead, J.D., Kinsley, L.P., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M. and Handler, M.R. (1997) A simple method for the price determination of 440 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134, 311—326.CrossRefGoogle Scholar
Ferraccioli, F., Jones, P.C., Curtis, M.L. and Leat, P.T. (2005a) Subglacial imprints of early Gondwana break-up as identified from high resolution aero- geophysical data over western Dronning Maud Land, East Antarctica. Terra Nova, 17, 573—579.CrossRefGoogle Scholar
Ferraccioli, F., Jones, P.C., Curtis, M.L., Leat, P.T. and Riley, T.R. (2005b) Tectonic and magmatic patterns in the Jutulstraumen rift(?) region, East Antarctica, as imaged by high-resolution aeromagnetic data. Earth Planets Space, 57, 767—780.CrossRefGoogle Scholar
Floyd, P.A. (1985) Petrology and geochemistry of intraplate sheet-flow basalts, Nauru Basin, Deep Sea Drilling Project leg 89. Pp. 471—497 in: Initial Reports of the Deep Sea Drilling Project 89 (R. Moberley and S.O. Schlanger, editors). US Government Printing Office, Washington, D.C.Google Scholar
Galerne, C., Neumann, E.R. and Planke, S. (2008) Emplacement mechanisms of sill complexes: information from the geochemical architecture of the Golden Valley Sill Complex, South Africa. Journal of Volcanology and Geothermal Research, 177, 425—440.CrossRefGoogle Scholar
Grantham, G.H. (1996) Aspects of Jurassic magmatism and faulting in western Dronning Maud Land, Antarctica: implications for Gondwana break-up. Pp. 63—73 in: Weddell Sea Tectonics and Gondwana Break-up. (B.C. Storey, E.C. King and R.A. Livermore, editors). Special Publications, 108, The Geological Society, London.Google Scholar
Barton, J.M., Klemd, R., Allssop, H.L., Auret, S.H. and Copperthwaite, Y.E. (1987) The geology and geochronology of the Annandagstoppane granite, western Dronning Maud Land, Antarctica. Contributions to Mineralogy and Petrology, 97, 488—496.CrossRefGoogle Scholar
Curtis, M.L., Riley, T.R., Owens, W.H., Leat, P.T. and Duncan, R.A. (2008) The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes in H.U. Sverdrupfjella, Dronning Maud Land, Antarctica. Implications for dyke swarm emplacement. Journal of Structural Geology, 30, 1429—1447.CrossRefGoogle Scholar
Eggins, S.M., Woodhead, J.D., Kinsley, L.P., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M. and Handler, M.R. (1997) A simple method for the price determination of 440 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134, 311—326.CrossRefGoogle Scholar
Ferraccioli, F., Jones, P.C., Curtis, M.L. and Leat, P.T. (2005a) Subglacial imprints of early Gondwana break-up as identified from high resolution aero- geophysical data over western Dronning Maud Land, East Antarctica. Terra Nova, 17, 573—579.CrossRefGoogle Scholar
Ferraccioli, F., Jones, P.C., Curtis, M.L., Leat, P.T. and Riley, T.R. (2005b) Tectonic and magmatic patterns in the Jutulstraumen rift(?) region, East Antarctica, as imaged by high-resolution aeromagnetic data. Earth Planets Space, 57, 767—780.CrossRefGoogle Scholar
Floyd, P.A. (1985) Petrology and geochemistry of intraplate sheet-flow basalts, Nauru Basin, Deep Sea Drilling Project leg 89. Pp. 471—497 in: Initial Reports of the Deep Sea Drilling Project 89 (R. Moberley and S.O. Schlanger, editors). US Government Printing Office, Washington, D.C. Google Scholar
Galerne, C., Neumann, E.R. and Planke, S. (2008) Emplacement mechanisms of sill complexes: information from the geochemical architecture of the Golden Valley Sill Complex, South Africa. Journal of Volcanology and Geothermal Research, 177, 425—440.CrossRefGoogle Scholar
Grantham, G.H. (1996) Aspects of Jurassic magmatism and faulting in western Dronning Maud Land, Antarctica: implications for Gondwana break-up. Pp. 63—73 in: Weddell Sea Tectonics and Gondwana Break-up. (B.C. Storey, E.C. King and R.A. Livermore, editors). Special Publications, 108, The Geological Society, London.Google Scholar
Grantham, G.H. and Hunter, D.R. (1991) The timing and nature of faulting and jointing adjacent to the Pencksökket, western Dronning Maud Land, Antarctica. Pp. 47—51 in: Geological Evolution of Antarctica (M.R.A Thomson, J.A. Crame and J.W. Thomson, editors). Cambridge University Press, Cambridge, UK.Google Scholar
Grantham, G.H., Groenewald, P.B. and Hunter, D.R. (1988) Geology of the northern H.U. Svedrupfjella, western Dronning Maud Land and implications for Gondwana reconstructions. South African Journal of Antarctic Research, 18, 2—10.Google Scholar
Grantham, G.H., Guise, P.D., Spell, T. and Havenga, A. (1998) The chronology of Jurassic intrusions, H.U. Sverdrupfjella, Dronning Maud Land, Antarctica (abstract). Journal of African Earth Sciences, 27 (1A), 92.Google Scholar
Groenewald, P.B., Grantham, G.H. and. Watkeys, M.K. (1991) Geological evidence for a Proterozoic to Mesozoic link between southeastern Africa and Dronning Maud Land, Antarctica. Journal of the Geological Society, 148, 1115—1123.CrossRefGoogle Scholar
Groenewald, P.M., Moyes, A.B., Grantham, G.H. and Krynauw, J.R. (1995) East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land. Precambrian Research 75, 231—250.Google Scholar
Harris, C., Marsh, J.S., Duncan, A.R. and Erlank, A.J. (1990) The petrogenesis of the Kirwan Basalts of Dronning Maud Land, Antarctica. Journal of Petrology, 31, 341—369.CrossRefGoogle Scholar
Harris, C., Johnson, W.P. and Philips, D. (2002) Petrogeneis of the Mesozoic Sistefjell syenite intrusion, Dronning Maud Land, Antarctica and surrounding low-δ18O lavas. South African Journal of Geology, 105, 205—226.CrossRefGoogle Scholar
Harris, C. and Grantham, G.H. (1993) Geology and petrogenesis of the Straumsvola nepheline syenite complex, Dronning Maud Land, Antarctica. Geological Magazine, 130, 513—532.CrossRefGoogle Scholar
Jacobs, J., Thomas, R.J. and Weber, K. (1993) Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during Kibaran (Grenville) orogeny. Geology, 21, 203—206.2.3.CO;2>CrossRefGoogle Scholar
Jerram, D.A. and Widdowson, M. (2005) The anatomy of continental flood basalt provinces: geological constraints on the processes and products of flood volcanism. Lithos, 79, 385—405.CrossRefGoogle Scholar
Jourdan, F., F^raud, G., Bertrand, H., Kampunzu, A.B., Tshoso, G., Le Gall, B., Tiercelin, J. J. and Capiez, P. (2004) The Karoo triple junction questioned: evidence from Jurassic and Proterozoic 40Ar/39Ar ages and geochemistry of the Okavango dyke swarm (Botswana). Earth and Planetary Science Letters, 222, 989—1006.CrossRefGoogle Scholar
Leat, P.T., Curtis, M.L., Riley, T.R. and Ferraccioli, F. (2007) Jurassic magmatism in Dronning Maud Land: synthesis of results of the MAMOG project. Pp. 1047—1050 in: Antarctica: a keystone in a changing world. Online proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26—September 1, 2007 (A.K. Cooper and C.R. Raymond, editors.) U.S. Geological Survey and National Academies Press, (U.S. Geological Survey Open File Report, 2007—1047, Short research paper 033).Google Scholar
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali—silica diagram. Journal of Petrology, 27, 745—750.Google Scholar
Le Gall, B., Tshoso, G., Jourdan, F., Feraud, G., Bertrand, H., Tiercelin, J.J., Kampunzu, A.B., Modisi, M.P., Dyment, J. and Maia, M. (2002) 40Ar/39Ar geochronology and structural data from the giant Okavango and related mafic dyke swarms, Karoo igneous province, northern Botswana. Earth and Planetary Science Letters, 202, 595—606.CrossRefGoogle Scholar
Luttinen, A.V. and Furnes, H. (2000) Flood basalts of Vestfjella: Jurassic magmatism across an Archaean- Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. Journal of Petrology, 41, 1271 — 1305.CrossRefGoogle Scholar
Macdonald, R., Davies, G.R., Upton, B.G., Dunkley, P.N., Smith, M. and Leat, P.T. (1995) Petrogenesis of Silali volcano, Gregory rift, Kenya. Journal of the Geological Society, 152, 703—720.CrossRefGoogle Scholar
Marsh, J.S., Hooper, P.R., Rehacek, J., Duncan, R.A. and Duncan, A.R. (1997) Stratigraphy and age of Karoo basalts of Lesotho and implications for correlations with the Karoo igneous province. Pp. 247—272 in: Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (J.J. Mahoney and M.F. Coffin, editors). Geophysical Monograph, 100, American Geophysical Union, San Francisco, USA.Google Scholar
Moyes, A.B., Krynauw, J.R. and Barton, J.M. (1995) The age of the Ritscherflya Supergroup and Borgmassivet Intrusions, Dronning Maud Land, Antarctica. Antarctic Science, 7, 87—97.CrossRefGoogle Scholar
Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757—773.CrossRefGoogle Scholar
Ottley, C.J., Pearson, D.G and Irvine, G.J. (2003) A routine method for the dissolution of geological samples for the analysis of REE and trace elements via ICP-MS. Pp. 221—230 in: Plasma Source Mass Spectrometry. Special Publication, Royal Society of Chemistry, Cambridge, UK.Google Scholar
Pankhurst, R.J. and Rapela, C.R. (1995) Production of Jurassic rhyolites by anatexis of the lower crust of Patagonia. Earth and Planetary Science Letters, 134, 2336.CrossRefGoogle Scholar
Riley, T.R. and Knight, K.B. (2001) Age of pre-breakup Gondwana magmatism: a review. Antarctic Science, 13, 99110.CrossRefGoogle Scholar
Riley, T.R., Leat, P.T., Storey, B.C., Parkinson, I.J. and Millar, I.L. (2003) Ultramafic lamprophyres of the Ferrar large igneous province: evidence for a HIMU mantle component. Lithos, 66, 6376.CrossRefGoogle Scholar
Riley, T.R., Leat, P.T., Curtis, M.L., Millar, I.L. and Fazel, A. (2005) Early-Middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo large igneous province. Journal of Petrology, 46, 1489-1524.CrossRefGoogle Scholar
Riley, T.R., Curtis, M.L, Leat, P.T, Watkeys, M.K., Duncan, R.A., Millar, I.L. and Owens, W.H. (2006) Overlap of Karoo and Ferrar magma types in KwaZulu-Natal, South Africa. Journal of Petrology, 47, 541-566.Google Scholar
Spera, F.J. and Bohrson, W.A. (2004) Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation, and fractional crystallisation. Journal of Petrology, 45, 2459-2480.CrossRefGoogle Scholar
Wolmarans, L.G. and Kent, L.E. (1982) Geological investigations in western Dronning Maud Land, Antarctica - a synthesis. South African Journal of Antarctic Research supplement 2. Google Scholar
Zhang, X., Luttinen, A.V., Elliot, D.H., Larsson, K. and Foland, K.A. (2003) Early stages of Gondwana breakup: The 40Ar/39Ar geochronology of Jurassic basaltic rocks from western Dronning Maud Land, Antarctica, and implications for the timing of magmatic and hydrothermal events. Journal of Geophysical Research, 108, 2249.CrossRefGoogle Scholar
Supplementary material: File

Riley et al. supplementary material

Supplementary Table 1

Download Riley et al. supplementary material(File)
File 75.3 KB