Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T16:28:20.395Z Has data issue: false hasContentIssue false

Geochemistry of detrital zinc-rich chromite in conglomerates from eastern India

Published online by Cambridge University Press:  18 February 2022

Dipak C Pal*
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Biplab Chandra Sarkar
Affiliation:
Atomic Minerals Directorate for Exploration and Research, West Block VII, Sector-1, R K Puram, New Delhi 110066
Sarthak Ghosh
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Rahul Sen
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Ashim Jana
Affiliation:
Atomic Minerals Directorate for Exploration and Research, AMD Complex, Khasmahal, Jamshedpur 831002
Soumik Mukhopadhyay
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Deepak K Sinha
Affiliation:
Atomic Minerals Directorate for Exploration and Research, AMD Complex, Begumpet, Hyderabad 500016
*
*Author for correspondence: Dipak C Pal, Email: [email protected]; [email protected]

Abstract

On the western part of the eastern Indian shield, Archaean basement (Bonai granite) is overlain by radioactive conglomerate. The conglomerate contains well-rounded, fractured Mg-poor (<0.18 wt.% MgO), Al-rich (up to 21.14 wt.% Al2O3) Zn-rich chromite (>35.0 wt.% Cr2O3) containing up to 15.5 wt.% ZnO. This is the first reported occurrence of detrital zinc-rich chromite having such unusually high ZnO from India, and to our knowledge, the third reported occurrence in radioactive quartz-pebble conglomerate after Witwatersrand, South Africa and Tarkwa, Ghana. Zinc-rich chromite grains are either clean or contain exsolution blebs/lamella of rutile. The conglomerates show evidence for post-depositional hydrothermal fluid influx and fluid-induced mineral alteration. The strong negative correlation between Zn and Fe2+, Al and Cr, and Al and Fe3+, and strong positive correlation between Zn and Al suggest secondary incorporation of Zn and Al by substitution of Fe2+ and Cr (and Fe3+), respectively, leading to partial transformation of (Fe)(Cr,Al,Fe3+)2O4 towards ZnAl2O4 composition. The chromite grains were possibly derived from komatiite. The timing of Zn enrichment, either at the provenance prior to sedimentation, or at the depositional site post-dating sedimentation, remains unresolved.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Katharina Pfaff

References

Acharyya, S.K., Gupta, A. and Orihashi, Y. (2010) New U-Pb zircon ages from Paleo-Mesoarchean TTG gneisses of the Singhbhum Craton, Eastern India. Geochemical Journal, 44, 8188.10.2343/geochemj.1.0046CrossRefGoogle Scholar
Arai, S. and Ishimaru, S. (2011) Zinc-rich chromite inclusions in diamonds: Possibility of deep recycling origin. Journal of Mineralogical and Petrological Sciences, 106, 8590.10.2465/jmps.101014CrossRefGoogle Scholar
Bachhar, P., Saha, D., Santosh, M., Liu, H.-D., Kwon, S., Banerjee, A., Patranabis-Deb, S. and Deb, G.K. (2021) Mantle heterogeneity and crust-mantle interaction in the Singhbhum craton, India: New evidence from 3340 Ma komatiites. Lithos, 382–383, 105931.Google Scholar
Barnes, S.J. and Roeder, P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 22792302.10.1093/petrology/42.12.2279CrossRefGoogle Scholar
Bevan, J.C. and Mallinson, L.G. (1980) Zinc- and manganese-bearing chromites and associated grossular from Zimbabwe. Mineralogical Magazine, 43, 811814.10.1180/minmag.1980.043.330.17CrossRefGoogle Scholar
Béziat, D. and Monchoux, P. (1991) Les spindles chromozincifères du district aurifère de Salsigne (Montagne Noire, France) / Cr-and Zn-bearing spinels in the Salsigne district gold deposit (Montagne Noire, France). European Journal of Mineralogy, 3, 957970.10.1127/ejm/3/6/0957CrossRefGoogle Scholar
Béziat, D., Joron, J.-L., and Monchoux, P. (1993) Spessartites in the Montagne Noire, France: mineralogical and geochemical data. European Journal of Mineralogy, 5, 879892.10.1127/ejm/5/5/0879CrossRefGoogle Scholar
Bunch, T.E., Keil, K. and Huss, G.I. (1972) The Landes Meteorite. Meteoritics, 7, 3138.10.1111/j.1945-5100.1972.tb00421.xCrossRefGoogle Scholar
Burns, P., Hawthorne, F., Libowitzky, E., Bordes, N. and Ewing, R. (1997) Donathite discredited: a mixture of two spinels. Neues Jahrbuch Fur Mineralogie: Monatshefte, 1997, 163174.10.1127/njmm/1997/1997/163CrossRefGoogle Scholar
Challis, G.A., Grapes, R. and Palmer, K. (1995) Chromian muscovite, uvarovite, and zinc-rich chromite; products of regional metasomatism in Northwest Nelson, New Zealand. The Canadian Mineralogist, 33, 12631284.Google Scholar
Chaudhuri, T., Satish-Kumar, M., Mazumder, R. and Biswas, S. (2017) Geochemistry and Sm-Nd isotopic characteristics of the Paleoarchean Komatiites from Singhbhum Craton, Eastern India and their implications. Precambrian Research, 298, 385402.10.1016/j.precamres.2017.06.014CrossRefGoogle Scholar
Chikami, J., Miyamoto, M. and Takeda, H. (1999) The variation of Zn content in spinel group minerals and daubreelites of primitive achondrites. Antarctic Meteorite Research, 12, 139150.Google Scholar
Czamanske, G.K., Himmelberg, G.R. and Goff, F.E. (1976) Zoned Cr, Fe-spinel from the La Perouse layered gabbro, Fairweather Range, Alaska. Earth and Planetary Science Letters, 33, 111118.10.1016/0012-821X(76)90163-1CrossRefGoogle Scholar
Dey, S., Topno, A., Liu, Y. and Zong, K. (2017) Generation and evolution of Palaeoarchaean continental crust in the central part of the Singhbhum craton, eastern India. Precambrian Research, 298, 268291.10.1016/j.precamres.2017.06.009CrossRefGoogle Scholar
Donaldson, M.J. and Bromley, G.J. (1981) The Honeymoon Well nickel sulfide deposits, Western Australia. Economic Geology, 76, 15501564.10.2113/gsecongeo.76.6.1550CrossRefGoogle Scholar
Donath, M. (1931) Zinc-bearing chromite. American Mineralogist, 16, 484487.Google Scholar
Donnelly, C.L., Stachel, T., Creighton, S., Muehlenbachs, K. and Whiteford, S. (2007) Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. Lithos, 98, 160176.10.1016/j.lithos.2007.03.003CrossRefGoogle Scholar
Eales, H.V. and Reynolds, I.M. (1983) Factors influencing the composition of chromite and magnetite in some southern African rocks. Geological Society South Africa, Special Publication, 7, 520.Google Scholar
Economou-Eliopoulos, M. (2003) Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance. Journal of Geochemical Exploration, 80, 4154.10.1016/S0375-6742(03)00181-XCrossRefGoogle Scholar
Fanlo, I., Gervilla, F., Colás, V. and Subías, I. (2015) Zn-, Mn- and Co-rich chromian spinels from the Bou-Azzer mining district (Morocco): Constraints on their relationship with the mineralizing process. Ore Geology Reviews, 71, 8298.10.1016/j.oregeorev.2015.05.006CrossRefGoogle Scholar
Figueiras, J. and Waerenborgh, J.C. (1997) Fully oxidized chromite in the Serra Alta (South Portugal) quartzites: chemical and structural characterization and geological implications. Mineralogical Magazine, 61, 627638.10.1180/minmag.1997.061.408.02CrossRefGoogle Scholar
Gahlan, H.A. and Arai, S. (2007) Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco. Journal of Mineralogical and Petrological Sciences, 102, 6985.10.2465/jmps.060212CrossRefGoogle Scholar
Goswami, J.N., Mishra, S., Wiedenbeck, M., Ray, S.L. and Saha, A.K. (1995) 3.55 Ga old zircon from Singhbhum–Orissa Iron Ore Craton, eastern India. Current Science, 69, 10081012.Google Scholar
Griffin, W.L., Sobolev, N. V, Ryan, C.G., Pokhilenko, N.P., Win, T.T. and Yefimova, E.S. (1993) Trace elements in garnets and chromites: Diamond formation in the Siberian lithosphere. Lithos, 29, 235256.10.1016/0024-4937(93)90019-9CrossRefGoogle Scholar
Groves, D.I., Barrett, F.M., Binns, R.A. and McQueen, K.G. (1977) Spinel phases associated with metamorphosed volcanic-type iron-nickel sulfide ores from Western Australia. Economic Geology, 72, 12241244.10.2113/gsecongeo.72.7.1224CrossRefGoogle Scholar
Groves, D.I., Barret, F.M. and Brotherton, R.H. (1983) Exploration significance of chrome-spinels in mineralized ultramafic rocks and nickel-copper ores. Geological Society of South Africa, Special Publication, 7, 2130.Google Scholar
Haggerty, S.E. (1972) Luna 16: An opaque mineral study and a systematic examination of compositional variations of spinels from Mare Fecunditatis. Earth and Planetary Science Letters, 13, 328352.10.1016/0012-821X(72)90109-4CrossRefGoogle Scholar
Jana, A., Sarkar, B.C., Kumar, S., Kumar, A., Yadav, G.S. and Kumar, P. (2016) Gold and uranium occurrences in quartz-pebble conglomerate of Iron Ore Group, Bagiyabahal-Baratangra Area, Sundargarh District, Odisha, India. Current Science, 111, 19171921.Google Scholar
Johan, Z. and Ohnenstetter, D. (2010) Zincochromite from the Guaniamo river diamondiferous placers, Venezuela: evidence of its metasomatic origin. The Canadian Mineralogist, 48, 361374.10.3749/canmin.48.2.361CrossRefGoogle Scholar
Jurković, I. and Jakšić, M. (1994) A zinc-rich chrome-spinel from the Cr-Ba-Fe-Cu-Zn deposit near Busovaca (Bosnia and Herzegovina). Geologia Croatica, 47, 83102.Google Scholar
Knorring, O.V., Condliffe, E. and Tong, Y. (1986) Some mineralogical and geochemical aspects of chromium-bearing skarn minerals from northern Karelia, Finland. Bulletin of the Geological Society of Finland, 58, 277292.CrossRefGoogle Scholar
Kumar, A., Birua, S., Pande, D., Nath, A.R., Babu, P.R.R. and Pandit, S.A. (2009) Radioactive quartz-pebble conglomerates from western margin of Bonai granite pluton, Sundargarh district, Orissa-A new find. Journal of the Geological Society of India, 73, 537542.10.1007/s12594-009-0037-5CrossRefGoogle Scholar
Liipo, J.P., Vuollo, J.I., Nykanen, V.M. and Piirainen, T.A. (1995) Zoned Zn-rich chromite from the Naataniemi serpentinite massif, Kuhmo greenstone belt, Finland. The Canadian Mineralogist, 33, 537545.Google Scholar
Matsumoto, I., Arai, S. and Miura, M. (2017) Chromian spinels and olivines in a contact-metamorphosed peridotite-sediment system from Nagasawa, SW Japan: Implications for mobility of elements in a hydrothermal condition system. Ore Geology Reviews, 91, 682694.10.1016/j.oregeorev.2017.08.028CrossRefGoogle Scholar
Meyer, H.O.A. and Boyd, F.R. (1972) Composition and origin of crystalline inclusions in natural diamonds. Geochimica et Cosmochimica Acta, 36, 12551273.10.1016/0016-7037(72)90048-8CrossRefGoogle Scholar
Mishra, S., Deomurari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S. and Saha, A.K. (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Research, 93, 139151.10.1016/S0301-9268(98)00085-0CrossRefGoogle Scholar
Mitra, S. and Samanta, A.K. (1996) Rutile Exsolution in Fe3+-chromites: A case study from layered Granulitic Complex of Sittampundi, S. India. Journal of the Geological Society of India, 47, 7582.Google Scholar
Mondal, S.K., Das, E., Banerjee, R. and Reisberg, L. (2019) trace element in chromites of komatiites from the Archean Gorumahisani Greenstone Belt, Singhbhum Craton (India). Goldschmidt Abstract, Article 2318, https://goldschmidtabstracts.info/2019/2318.pdfGoogle Scholar
Moorbath, S., Taylor, P.N. and Jones, N.W. (1986) Dating the oldest terrestrial rocks — fact and fiction. Chemical Geology, 57, 6386.10.1016/0009-2541(86)90094-XCrossRefGoogle Scholar
Moore, A.C. (1977) Zinc-bearing chromite (donathite?) from Norway: a second look. Mineralogical Magazine, 41, 351355.10.1180/minmag.1977.041.319.06CrossRefGoogle Scholar
Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G. and Medda, R.A. (2008) Dating the oldest greenstone in India: A 3.51-Ga precise U-Pb SHRIMP zircon age for dacitic lava of the southern Iron Ore Group, Singhbhum Craton. The Journal of Geology, 116, 449461.10.1086/590133CrossRefGoogle Scholar
Nelson, D.R., Bhattacharya, H.N., Thern, E.R. and Altermann, W. (2014) Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India. Precambrian Research, 255, 412432.CrossRefGoogle Scholar
Nesterov, A.R. and Rumyantseva, Y.V. (1987) Zincochromite ZnCr2O4 – A new mineral from Karelia. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 116.3, 367371.Google Scholar
Olierook, H.K.H., Clark, C., Reddy, S.M., Mazumder, R., Jourdan, F. and Evans, N.J. (2019) Evolution of the Singhbhum Craton and supracrustal provinces from age, isotopic and chemical constraints. Earth-Science Reviews, 193, 237259.10.1016/j.earscirev.2019.04.020CrossRefGoogle Scholar
Pan, Y. and Fleet, M.E. (1989) Cr-rich calc-silicates from the Hemlo area, Ontario. The Canadian Mineralogist, 27, 565577.Google Scholar
Pan, Y. and Fleet, M.E. (1991) Barian feldspar and barian-chromian muscovite from the Hemlo area, Ontario. The Canadian Mineralogist, 29, 481498.Google Scholar
Pandey, O.P., Mezger, K., Ranjan, S., Upadhyay, D., Villa, I.M., Nägler, T.F. and Vollstaedt, H. (2019) Genesis of the Singhbhum Craton, eastern India; implications for Archean crust-mantle evolution of the Earth. Chemical Geology, 512, 85106.10.1016/j.chemgeo.2019.02.040CrossRefGoogle Scholar
Saha, A.K. (1994) Crustal Evolution of Singhbhum North Orissa Eastern India. Geological Society of India, Memoir 27. Pp. 341.Google Scholar
Schulze, D.J., Flemming, R.L., Shepherd, P.H.M. and Helmstaedt, H. (2014) Mantle-derived guyanaite in a Cr-omphacitite xenolith from Moses Rock diatreme, Utah. American Mineralogist, 99, 12771283.10.2138/am.2014.4771CrossRefGoogle Scholar
Seeliger, E. and Mücke, A. (1969) Donathit, ein tetragonaler, Zn-reicher Mischkristall von Magnetit und Chromit. Neues Jahrbuch Fur Mineralogie: Monatshefte, 1969, 4957.Google Scholar
Sengupta, S., Paul, D.K., de Laeter, J.R., McNaughton, N.J., Bandopadhyay, P.K. and de Smeth, J.B. (1991) Mid-Archaean evolution of the Eastern Indian Craton: geochemical and isotopic evidence from the Bonai pluton. Precambrian Research, 49, 2337.10.1016/0301-9268(91)90054-ECrossRefGoogle Scholar
Singh, A.K. and Singh, R.B. (2013) Genetic implications of Zn- and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India. Geological Journal, 48, 2238.10.1002/gj.2428CrossRefGoogle Scholar
Staddon, L.G., Parkinson, I.J., Cavosie, A.J., Elliott, T., Valley, J.W., Fournelle, J., Kemp, A.I.S. and Shirey, S.B. (2021) Detrital Chromite from Jack Hills, Western Australia: Signatures of Metamorphism and Constraints on Provenance. Journal of Petrology, 62, egab052.10.1093/petrology/egab052CrossRefGoogle Scholar
Taguchi, T., Satish-Kumar, M., Hokada, T. and Jayananda, M. (2012) Petrogenesis of Cr-rich calc-silicate rocks from the Bandihalli supracrustal belt, Archean Dharwar Craton, India. The Canadian Mineralogist, 50, 705718.10.3749/canmin.50.3.705CrossRefGoogle Scholar
Tait, J., Zimmermann, U.D.O., Miyazaki, T., Presnyakov, S., Chang, Q., Mukhopadhyay, J. and Sergeev, S. (2011) Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton. Geological Magazine, 148, 340347.10.1017/S0016756810000920CrossRefGoogle Scholar
Taylor, L.A., Anand, M., Promprated, P., Floss, C. and Sobolev, N.V. (2003) The significance of mineral inclusions in large diamonds from Yakutia, Russia. American Mineralogist, 88, 912920.10.2138/am-2003-5-621CrossRefGoogle Scholar
Thayer, T.P., Milton, C., Dinnin, J. and Rose, H. Jr. (1964) Zinc-rich chromite from Outokumpu, Finland. American Mineralogist, 49, 11781183.Google Scholar
Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K. and Berndt, J. (2014) Magmatic and metamorphic history of Paleoarchean tonalite–trondhjemite–granodiorite (TTG) suite from the Singhbhum craton, eastern India. Precambrian Research, 252, 180190.10.1016/j.precamres.2014.07.011CrossRefGoogle Scholar
Upadhyay, D., Chattopadhyay, S. and Mezger, K. (2019) Formation of Paleoarchean-Mesoarchean Na-rich (TTG) and K-rich granitoid crust of the Singhbhum craton, eastern India: Constraints from major and trace element geochemistry and Sr–Nd–Hf isotope composition. Precambrian Research, 327, 255272.10.1016/j.precamres.2019.04.009CrossRefGoogle Scholar
Wagner, C. and Velde, D. (1985) Mineralogy of two peralkaline, arfvedsonite-bearing minettes. A new occurrence of Zn-rich chromite. Bulletin de Mineralogie, 108, 173187.Google Scholar
Weiser, T.W. and Hirdes, W. (1997) Zinc-rich chromite from Paleoproterozoic conglomerates at Tarkwa gold mine, Ghana. The Canadian Mineralogist, 35, 587595.Google Scholar
Weiser, T.W., Kojonen, K.K. and Lodziak, J. (2008) New data of eskolaite, Zn-bearing chromite, willyamite and ullmannite from the Outokumpu mine, eastern Finland. Bulletin of the Geological Society of Finland, 80, 518.10.17741/bgsf/80.1.001CrossRefGoogle Scholar
Wylie, A.G., Candela, P.A. and Burke, T.M. (1987) Compositional zoning in unusual Zn-rich chromite from the Sykesville District of Maryland and its bearing on the origin of “ferritchromit.” American Mineralogist, 72, 413422.Google Scholar
Zakrzewski, M.A. (1989) Chromian spinels from Kusa, Bergslagen, Sweden. American Mineralogist, 74, 448455.Google Scholar