Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T19:41:18.943Z Has data issue: false hasContentIssue false

Galuskinite, Ca7(SiO4)3(CO3), a new skarn mineral from the Birkhin gabbro massif, Eastern Siberia, Russia

Published online by Cambridge University Press:  05 July 2018

B. Lazic
Affiliation:
Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
T. Armbruster*
Affiliation:
Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
V. B. Savelyeva
Affiliation:
Institute of the Earth Crust SB RAS, Lermontov St. 128, 664033 Irkutsk, Russia
A. E. Zadov
Affiliation:
OOO Science Research Centre ‘NEOCHEM’, Altuf’evskoye Highway 43, Moscow, Russia
N. N. Pertsev
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS, Staromonetny 35, Moscow, Russia
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
*

Abstract

In addition to spurrite, Ca5(SiO4)2(CO3), and tilleyite, Ca5(Si2O7)(CO3)2, galuskinite, C is the third mineral in the CaO—SiO2—CO2 ternary system. Galuskinite, monoclinic, space group P21/c (a = 18.79, b = 6.72, c = 10.47 Å, β = 90.79°, V = 1322 Å3, Z = 4), occurs in thin veins which cut calcio-olivine, γ-Ca2SiO4, skarn with larnite, β-Ca2SiO4, relics. Pavlovskyite, Ca8(SiO4)2(Si3O10), and dellaite, Ca6(Si2O7)(SiO4)(OH)2, form a margin between the veins and the calcio-olivine skarn. The sanidinite facies high-temperature skarn formed ∼500 Ma ago when gabbroid rocks of the Birkhin complex (Baikal area, Eastern Siberia, Russia) intruded and contact-metamorphosed limestone xenoliths. Galuskinite is a retrograde product of skarn alteration and has neither been described from cement clinker production processes nor from studies of the CaO—SiO2—CO2 system. The crystal structure of galuskinite, refined from single crystal X-ray data to Ri = 3.1%, has a modular character. One may define a polysomatic series with spurrite and larnite as endmembers and galuskinite as a 1:1 polysome built from regular alternating spurrite and larnite modules. Differences between the X-ray powder patterns of galuskinite and spurrite are most obvious in the low 8 region. Galuskinite is named after the Russian mineralogists Irina O. Galuskina and Evgeny V. Galuskin, Faculty of Earth Sciences. University of Silesia, Poland, for their outstanding contributions to skarn mineralogy.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, S.O. (1965) Polythermal metamorphism of limestones at Kilchoan, Ardnamurchan. Mineralogical Magazine, 34, 1-15.CrossRefGoogle Scholar
Armbruster, T., Yang, P. and Liebich, B.W. (1996) Mechanism of the SiO4 for CO3 substitution indefernite, Ca6(CO3)1.58(Si2O7)0.21(OH)7 [Cl0.50,(OH)0.08(H2O)0.42]: a single-crystal X-ray study at 100 K. American Mineralogist, 81, 625-631.CrossRefGoogle Scholar
Beard, A.D. and Drake, S.M. (2007) A melilite-bearing high-temperature calcicskarn, Camasunary Bay, Isle of Skye. Scottish Journal of Geology, 43, 57-67.CrossRefGoogle Scholar
Bennett, J.M., Gard, J.A., Speakman, K. and Taylor, H.F.W. (1966) Ca8Si5O18 and the nature of “γdicalcium silicate hydrate”. Nature, 209, 1127.CrossRefGoogle Scholar
Bolio-Arceo, H. and Glasser, F.P. (1990) Formation of spurrite, Ca5(SiO4)2CO3 . Cement and Concrete Research, 20, 301-307.CrossRefGoogle Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, UK, 279 pp.Google Scholar
Bruker, (1999) SMART and SAINT-Plus. (versions 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Donskaya, T.V., Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Sal’nikova, E.B., Kovach, V.P., Yakovleva, S.Z. and Berezhnaya, H.G. (2000) The Baikal collisional metamorphic belt. Doklady RAS, 374, 1075-1079. [in Russian].Google Scholar
Eitel, W. (1923) Über das binäre Syst em CaCO3–Ca2SiO4 und den Spurrit. Neues Jahrbuch der Mineralogie, Geologie und Paläontologie, Beilageband, 48, 63-74.Google Scholar
Fedorovsky, V.S. (2004) Geological map of southeastern part of Ol’khon region. The Vernadsky State Geological Museum RAS, Moscow.Google Scholar
Fedorovsky, V.S. and Sklyarov, E.V. (2010) The Olkhon geodynamic proving ground (lake Baikal): high resolution satellite data and geological maps of new generation. Geodynamics & Tectonophysics, 4, 331-418. [in Russian].CrossRefGoogle Scholar
Fedorovsky, V.S., Sklyarov, E.V., Izokh, A.E., Kotov, A.B., Lavrenchuk, A.V. and Mazukabzov, A.M. (2010) Strike-slip tectonics and subalkaline mafic magmatism in the Early Paleozoic collisional system of the western Baikal region. Geology and Geophysics, 51, 700-. [in Russian]. English version: Russian Geology and Geophysics, 51, 429–442.Google Scholar
Galuskin, E.V., Gazeev, V.M., Lazic, B., Armbruster, T., Galuskina, I.O., Zadov, A.E., Wrzalik, R., Dzierzanowski, P., Gurbanov, A.G. and Bzowska, G. (2009) Chegemite Ca7(SiO4)3(OH)2 – a new humite-group calcium mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 21, 1045-1059.CrossRefGoogle Scholar
Galuskin, E.V., Lazic, B., Savelyeva, V.B., Armbruster, T., Galuskina, I.O., Zadov, A.E., Dzierżanowski, P., Pertsev, N.N. and Gazeev, V.M. (2011) Pavlovskyite, IMA 2010-063. CNMNC Newsletter No. 8, April 2011, page 290; Mineralogical Magazine, 75, 289-294.Google Scholar
Galuskina, I.O., Lazic, B., Armbruster, T., Galuskin, E.V., Gazeev, V.M., Zadov, A.E., Pertsev, N.N., Jezal, L., Wrzalik, R. and Gurbanov, A.G. (2009) Kumtyubeite Ca5(SiO4)2F2 – a new calcium mineral of the humite group from Northern Caucasus, Kabardino-Balkaria, Russia. American Mineralogist, 94, 1361-1370.CrossRefGoogle Scholar
Glasser, F.P. (1973) The formation and thermal stability of spurrite, Ca5(SiO4)2CO3 . Cement and Concrete Research, 3, 23-28.CrossRefGoogle Scholar
Garbev, K. (2004) Struktur, Eigenschaften und quantitative Rietveldanalyse von hydrothermal kristallisierten Calciumsilikathydraten (C-S-H-Phasen). Scientific report of the Karlsruhe Research Centre, FZKA 6877, Karlsruhe, Germany, 241 pp.Google Scholar
Garbev, K., Gasharova, B., Beuchle, G., Kreisz, S. and Stemmermannn, P. (2008) First observation of α-Ca2[SiO3(OH)](OH)–Ca6[Si2O7][SiO4](OH)2 phase transformation upon thermal treatment in air. Journal of the American Ceramic Society, 91, 263-271.CrossRefGoogle Scholar
Grice, J.D. (2005) The structure of spurrite, tilleyite and scawtite, and relationships to other silicate-carbonate minerals. The Canadian Mineralogist, 43, 1489-1500.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysaltminerals. Zeitschrift für Kristallographie, 223, 41-68.Google Scholar
Henmi, C. and Henmi, K. (1978) Synthesis of spurrite and tilleyite at low CO2 partial pressure. Mineralogical Journal, 9, 106-110.CrossRefGoogle Scholar
Henmi, C., Kusachi, I., Kawahara, A. and Henmi, K. (1977) Fukalite, a new calcium carbonate silicate hydrate mineral. Mineralogical Journal, 8, 374-381.CrossRefGoogle Scholar
Joesten, R. (1976) High-temperature contact metamorphism of carbonate rocks in a shallow crustal environment, Christmas Mountains, Big Bend region, Texas. American Mineralogist, 61, 776-781.Google Scholar
Jost, K.H., Ziemer, B. and Seydel, R. (1977) Redetermination of the structure of b-dicalcium silicate. Acta Crystallographica, B33, 1700-.Google Scholar
Kapralik, I., Stevula, L., Petrovic, J. and Hanic, F. (1984) Study of the system CaO–SiO2–CO2–H2O in relation to scawtite under hydrothermal conditions. Cement and Concrete Research, 14, 866-872.CrossRefGoogle Scholar
Korikovsky, S.P. and Fedorovsky, V.S. (1981) Petrology of metamorphic rocks of the Ol’khon Region. Geology of granulites. Pp. 70–80 in: Field trip guide of the Baikal excursion of the international symposium, Irkutsk (Letnikov, F.A., editor). [in Russian].Google Scholar
Marincea, S., Bilal, E., Verkaeren, J., Pascal, M.L. and Fonteilles, M. (2001) Superposed parageneses in the spurrite-, tilleyite-, and gehlenite-bearing skarns from Cornet Hill, Apuseni Mountains, Romania. The Canadian Mineralogist, 39, 1435-1453.CrossRefGoogle Scholar
Mekhonoshin, A.S., Vladimirov, A.G., Fedorovsky, V.S., Volkova, N.I., Travin, A.V., Kolotilina, T.B., Khromych, S.V. and Yudin, D.S. (2004) Maficultramafic magmatism of the Ol’khon collisional system (West Baikal Area): 40Ar/39Ar age and structural position. Geodynamic evolution of the lithosphere of the Central-Asian foldbelt (from ocean to continent). Pp. 40-43 in: Proceedings of Scientific Conference in the Frame of Fundamental Research. IG SO RAS publishing, Irkutsk, Russia, [in Russian].Google Scholar
Merlino, S., Bonaccorsi, E, Grabezhev, A.I., Zadov, A.E., Pertsev, N.N. and Chukanov, N.V. (2009) Fukalite: an example of an OD structure with twodimensional disorder. American Mineralogist, 94, 323-333.CrossRefGoogle Scholar
Novoselova, M.R. and Turutanov, E.Kh. (1982) Morphology of Ozersky and Krestovsky gabbroid massifs of the Baikal region. Soviet Geology, 5, 111-116. [in Russian].Google Scholar
Sarp, H., Taner, M.F., Deferne, J., Bizouard, H. and Liebich, B.W. (1980) La defernite, Ca6(CO3)2(OH,Cl)8.nH2O, un nouveau carbonate de calcium chloro-hydroxylé. Bulletin de Minéralogie, 103, 185-189. [in French].CrossRefGoogle Scholar
Savelyeva, V.B., Uschapovskaya, Z.P. and Nartova, N.V. (1992) On the kilchoanite rock at Priol’khonye (westBai kal region). Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 121, 111-117.Google Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A shorthist ory of SHELX. Acta Crystallographica, A64, 122-.Google Scholar
Shimazaki, H., Miyawaki, R., Yokoyama, K., Matsubara, S. and Bunno, M. (2008) Occurrence and new data of dellaite from the Akagane mine, Japan. Journal of Mineralogical and Petrological Sciences, 103, 385-389.CrossRefGoogle Scholar
Sokol, E.V., Novikov, I.S., Zateeva, S.N, Sharygin, V.V. and Yapnik, Y. (2008) Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim formation, Israel). Doklady Earth Sciences, 420, 608-614.CrossRefGoogle Scholar
Speakman, K., Taylor, H.F.W., Bennett, J.M. and Gard, J.A. (1967) Hydrothermal reactions of g-dicalcium silicate. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1967, 1052-1060.CrossRefGoogle Scholar
Taylor, H.F.W. (1997) Cement Chemistry. Thomas Telford, London, 459 pp.CrossRefGoogle Scholar
Tilley, C.E. (1929) On larnite (calcium orthosilicate, a new mineral) and its associated minerals from the limestone contact-zone of Scawt Hill, Co. Antrim. Mineralogical Magazine, 22, 77-86.CrossRefGoogle Scholar
Tilley, C.E. and Hey, M.H. (1930) Scawtite, a new mineral from Scawt Hill, Co. Antrim. Mineralogical Magazine, 22, 222-224.CrossRefGoogle Scholar
Treiman, A.H. and Essene, E. (1983) Phase equilibria in the system CaO–SiO2–CO2 . American Journal of Science, 283A, 120-.Google Scholar
Tuttle, O.F. and Harker, R.I. (1957) Synthesis of spurrite and the reaction wollastonite + calcite = spurrite + carbon dioxide. American Journal of Science, 255, 226-234.CrossRefGoogle Scholar
Vladimirov, V.G., Korneva, I.B., Semenov, I.V. and Yudin, D.S. (2009) Structural-kinematic position of the Birkhin massif as indicator of the Ol’khon region evolution (eastern Baikal region). Geodynamic evolution of lithosphere of Asian mobile belt (from ocean to continent). Pp. 62-64 in: Proceedings of Scientific Conference in the Frame of Fundamental Research. IG SO RAS publishing, Irkutsk, Russia, [in Russian].Google Scholar
Wright, F.E. (1908) On three contact minerals from Velardena, Durango, Mexico (gehlenite, spurrite and hillebrandite). American Journal of Science, 26, 545-554.CrossRefGoogle Scholar
Wyllie, P.J. and Haas, J.L. (1965) The system CaO–SiO2–CO2–H2O: I. Melting relationships with excess vapor at 1 kilobar pressure. Geochimica et Cosmochimica Acta, 29, 871-892.CrossRefGoogle Scholar
Wyllie, P.J. and Haas, J.L. (1966) The system CaO–SiO2–CO2–H2O: II. The petrogenetic model. Geochimica et Cosmochimica Acta, 30, 525-543.CrossRefGoogle Scholar
Yvon, K., Jeitschko, W. and Parthé, E. (1977) LAZY PULVERIX, a computer program, for calculating Xray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 73-74.CrossRefGoogle Scholar
Zharikov, V.A. and Shmulovich, K.I. (1969) High-temperature mineral equilibrium in the system CaO–SiO2–CO2 . Geochemistry, 9, 1039-1056. [in Russian].Google Scholar