Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T00:36:41.897Z Has data issue: false hasContentIssue false

From structure topology to chemical composition. XI. Titanium silicates: crystal structures of innelite-1T and innelite-2M from the Inagli massif, Yakutia, Russia, and the crystal chemistry of innelite

Published online by Cambridge University Press:  05 July 2018

E. Sokolova*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow 109017, Russia
F. Cámara
Affiliation:
CNR - Istituto di Geoscienze e Georisorse, unità di Pavia, via Ferrata 1, I-27100 Pavia, Italy Dipartimento di Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, 10120 Torino, Italy
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
*

Abstract

The crystal structures of two polytypes of innelite, ideally Ba4Ti2Na2M2+Ti(Si2O7)2[(SO4) (PO4)]O2[O(OH)] where M2+ = Mn, Fe2+, Mg, Ca: innelite-1T, a 5.4234(9), b 7.131(1), c 14.785(3) Å, α 98.442(4), β 94.579(3), γ 90.009(4)°, V 563.7(3) Å3, space group P1̄, Dcalc = 4.028 g/cm3, Z = 1; and innelite-2M, a 5.4206(8), b 7.125(1), c 29.314(4) Å, 0 94.698(3)°, V 1128.3(2) Å3, space group P2/c, Dcalc.= 4.024 g/cm3, Z = 2, from the Inagli massif, Yakutia, Russia, have been refined to R values of 8.99 and 7.60%, respectively. Electron-microprobe analysis gave the empirical formula for innelite as (Ba3.94Sr0.06)Σ4.00(Na2.16Mn0.382+Fe2+0.17Mg0.15Ca0.100.04)Σ3(Ti2.97Nb0.02Al0.02)Σ3.01Si4.01 (S1.02P0.810.17)Σ2H1.84O25.79F0.21 which is equivalent to (Ba3.94Sr0.06)Σ4.00(Ti1.97Nb0.02Al0.02)Σ2.01 [(OH0.99F0.21)Σ1.20O0.80], calculated on the basis of 26 (O + F) anions, with H2O calculated from structure refinement. The crystal structure of innelite is a combination of a TS (titanium silicate) block and an I (intermediate) block. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral) and exhibits linkage and stereochemistry typical for Ti-disilicate minerals of Group III (Ti = 3 a.p.f.u.): two H sheets connect to the O sheet such that two (Si2O7) groups link to the trans edges of a Ti octahedron of the O sheet. The I block contains T sites, statistically occupied by S and P, and Ba atoms. In the structures of innelite-1T and innelite-2M, TS blocks are related by an inversion centre and a cy glide plane, respectively. HRTEM images show a coherent intergrowth of the two polytypes, together with an as-yet unidentified ∼10 Å phase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1995) Handbook of Mineralogy. II. Silica, Silicates. Mineral Data Publishing, Tucson, Arizona, USA, 904 pp.Google Scholar
Back, M.E. and Mandarino, J.A. (2008) Fleischer's Glossary of Mineral Species 2008. The Mineralogical Record Inc., Tucson, Arizona, USA, 345 pp.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 1—30 in: Structure and Bonding in Crystals II (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.Google Scholar
Cámara, F. and Sokolova, E. (2007) From structure topology to chemical composition. VI. Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group-Ill Ti-disilicate mineral. Mineralogical Magazine, 71, 593—610.CrossRefGoogle Scholar
Cámara, F. and Sokolova, E. (2009) From structure topology to chemical composition. X. Titanium silicates: the crystal structure and crystal chemistry of nechelyustovite, a group III Ti-disilicate mineral. Mineralogical Magazine, 73, 887—897.Google Scholar
Cámara, F., Sokolova, E., Hawthorne, F.C. and Abdu, Y. (2008) From structure topology to chemical composition. IX. Titanium silicates: revision of the crystal chemistry of lomonosovite and murmanite, group-IV minerals. Mineralogical Magazine, 72, 1207—1228.CrossRefGoogle Scholar
Cámara, F., Sokolova, E. and Nieto, F. (2009) Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7. II. The crystal structure and crystal chemistry of a new group-II Ti-disilicate mineral. Mineralogical Magazine, 73, 855870.CrossRefGoogle Scholar
Chernov, A.N. Ilyukhin, V.V., Maksimov, B.A. and Belov, N.V. (1971) Crystal structure of innelite, Na2Ba3(Ba,K,Mn)(Ca,Ba)Ti(TiO2)2(Si2O7)2(SO4)2 . Soviet Physics Crystallography, 16, 65—69.Google Scholar
Chukanov, N.V., Moiseev, M.M., Pekov, I.V., Lazebnik, K.A., Rastsvetaeva, R.K., Zayakina, N.V., Ferraris, G. and Ivaldi, G. (2004) Nabalamprophyllite Ba(Na,Ba)﹛Na3Ti[TiO2O2Si4O14](OH,F)2﹜ - a new layer titanosilieate of the lamprophyllite group from Inagli and Kovdor alkaline-ultrabasic massifs, Russia. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 133, 5972.(in Russian).Google Scholar
Drozdov, Yu.N., Batalieva, N.G., Voronkov, A.A. and Kuz'min, E.A. (1974) Crystal structure of NanNb2TiSi4P2O25F. Soviet Physics Doklady, 19, 258259.Google Scholar
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite, Na11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH), a phosphate-bearing sorosilicate of the lomonosovite group. The Canadian Mineralogist 36, 1311 — 1320.Google Scholar
Guinier, A., Bokij, G.B., Boll-Dornberger, K., Cowley, J.M., Ďurovič, S., Jagodzinski, H., Krishna, P., de Wolff, P.M., Zvyagin, B.B., Cox, D.E., Goodman, P., Hahn, T., Kuchitsu, K. and Abrahams, S.C. (1984) Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the nomenclature of disordered, modulated and polytype structures. Ada Crystallographica, A40, 399404.Google Scholar
Johnsen, O. (1996) TEM observations and X-ray powder data on lamprophyllite polytypes from Gardiner Complex, East Greenland. Neues Jahrbuch für Mineralogie Monatshefte, 9, 407—417.Google Scholar
Kravchenko, S.M., Vlasova, E.V., Kazakova, M.E., Ilyukhin, V.V. and Abrashev, K.K. (1961) Innelite, a new barium silicate. Doklady Akademü Nauk SSSR, 141, 11981199.(in Russian).Google Scholar
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Ya.A. and Men'shikov, Yu.P. (2003) Crystal structures of lamprophyllite-2M and lampro-phyllite-2O from the Lovozero alkaline massif, Kola peninsula, Russia. European Journal of Mineralogy, 15, 711718.CrossRefGoogle Scholar
McDonald, A.M., Grice, J.D. and Chao, G.Y. (2000) The crystal structure of yoshimuraite, a layered Ba-Mn-Ti silicophosphate, with comments of five-coordinated Ti4+ . The Canadian Mineralogist, 38, 649656.CrossRefGoogle Scholar
Pekov, I.V., Chukanov, N.V., Kulikova, I.M. and Belakovsky, D.I. (2006) Phosphoinnelite, Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3, a new mineral from agpaitic pegmatites of Kovdor massif, Kola Peninsula. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 135, 52—60.(in Russian).Google Scholar
Peng, Zh., Zhang, J. and Shu, J. (1984) The crystal structure of barytolamprophyllite. Kexue Tongbao, 29, 237241.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ φ(ρZ) procedure for improved quantitative microanalysis. Pp. 104—106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rastsvetaeva, R.K. and Chukanov, N.V. (1999) Crystal structure of a new high-barium analogue of lamprophyllite with a primitive unit cell. Doklady Chemistry, 368, 228231.Google Scholar
Rastsvetaeva, R.K. and Dorfman, M.D. (1995) Crystal structure of Ba-lamprophyllite in the isomorphous lamprophyllite-baryto lamprophyllite series. Crystallography Reports, 40, 951954.Google Scholar
Rastsvetaeva, R.K., Sokolova, M.N. and Gusev, A.I. (1990) Refinement of the crystal structure of lamprophyllite. Mineralogicheskü Zhurnal, 12, 2528.(in Russian).Google Scholar
Rastsvetaeva, R.K., Evsyunin, V.G. and Konev, A.A. (1995) Crystal structure of K-barytolamprophyllite. Crystallography Reports, 40, 472—474.Google Scholar
Safyanov, Y.N., Vasil'eva, N.O., Golovachev, V.P., Kuz'min, E.A. and Belov, N.V. (1983) Crystal structure of lamprophyllite. Soviet Physics Doklady, 28, 207209.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radü and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX . Ada Crystallographica, A64, 112—122.Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 1273—1330.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2007) From structure topology to chemical composition. II. Titanium silicates: revision of the crystal structure and chemical formula of delindeite. The Canadian Mineralogist, 45, 12471261.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2008a) From structure topology to chemical composition. III. Titanium silicates: crystal chemistry of barytolamprophyllite. The Canadian Mineralogist, 46, 403—412.Google Scholar
Sokolova, E. and Cámara, F. (2008b) From structure topology to chemical composition. VIII. Titanium silicates: the crystal structure and crystal chemistry of mosandrite from type locality of Låven (Skådön), Langesundsfjorden, Larvik, Vestfold, Norway. Mineralogical Magazine, 72, 887—897.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008a) From structure topology to chemical composition. IV. Titanium silicates: the orthorhombic polytype of nabalamprophyllite from Lovozero massif, Kola Peninsula, Russia. The Canadian Mineralogist, 46, 13231331.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (20086) From structure topology to chemical composition. V. Titanium silicates: crystal chemistry of nacareniob-site-(Ce). The Canadian Mineralogist, 46, 13331342.CrossRefGoogle Scholar
Sokolova, E., Cámara, F., Hawthorne, F.C. and Abdu, Y. (2009a) From structure topology to chemical composition. VII. Titanium silicates: the crystal structure and crystal chemistry of jinshajiangite. European Journal of Mineralogy, 21, 871—883.CrossRefGoogle Scholar
Sokolova, E., Abdu, Y., Hawthorne, F.C., Stepanov, A.V., Bekenova, G.K. and Kotel'nikov, P.E. (20096) Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7. I. A new titanium-silicate mineral from the Verkhnee Espe deposit, Akjailyautas Mountains, Kazakhstan. Mineralogical Magazine, 73, 847—854.Google Scholar
Takéuchi, Y., Ohashi, Y., Sawada, H. and Haga, N. (1997) Crystal structure of yoshimuraite (Ba,Sr)2(S,P)O4Mn2OH[Si2O7TiO], with discussion on its local symmetry. Pp. 253—264 in: Tropochemical Cell-twinning (Takéuchi, Y., editor). Terra Scientific Publishing Company, Tokyo.Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Woodrow, P.J. (1964) Crystal structure of lamprophyl-lite. Nature, 204, 375.CrossRefGoogle Scholar
Supplementary material: File

Sokolova et al. supplementary material

Structure factors

Download Sokolova et al. supplementary material(File)
File 92.3 KB
Supplementary material: File

Sokolova et al. supplementary material

Structure factors

Download Sokolova et al. supplementary material(File)
File 283.6 KB
Supplementary material: File

Sokolova et al. supplementary material

Structure factors

Download Sokolova et al. supplementary material(File)
File 191 KB
Supplementary material: File

Sokolova et al. supplementary material

Structure factors

Download Sokolova et al. supplementary material(File)
File 227.8 KB
Supplementary material: File

Sokolova et al. supplementary material

Anisotropic displacement parameters

Download Sokolova et al. supplementary material(File)
File 88.1 KB