Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:17:11.585Z Has data issue: false hasContentIssue false

Franconite, NaNb2O5(OH)·3H2O: structure determination and the role of H bonding, with comments on the crystal chemistry of franconite-related minerals

Published online by Cambridge University Press:  05 July 2018

M. M. M. Haring*
Affiliation:
Department of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
A. M. McDonald
Affiliation:
Department of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

Abstract

The crystal structure of franconite, NaNb2O5(OH)·3H2O, has been characterized by single-crystal X-ray diffraction using material from Mont Saint-Hilaire, Québec, Canada. Results give a = 10.119(2), b = 6.436(1), c = 12.682(2) Å and β = 99.91(3)° and confirm the correct space group as P21/c. The crystal structure, refined to R = 4.63% and wR2 =11.95%, contains one Na site, two distorted octahedral Nb sites and nine O sites. It consists of clusters of four edge-sharing Nb(O,OH)6 octahedra, linked through shared corners to adjacent clusters, forming layers of Nb(O,OH)6 octahedra. These alternate along [100] with layers composed of NaO(H2O)4 polyhedra, the two being linked together by well defined H bonding. The predominance of H bonding, essential to the mineral, results in a perfect {100} cleavage. Chemical analyses (n = 7) of four crystals give the empirical formula (Na0.73Ca0.13☐0.14)∑=1.00(Nb1.96Ti0.02Si0.02Al0.01)∑=2.01O5(OH)·3H2O (based on nine oxygens) or ideally NaNb2O5(OH)·3H2O. Franconite is crystallo-chemically related to SOMS [Sandia Octahedral Molecular Sieves; Na2Nb2−xMxO6−x(OH)x·H2O with M = Ti, Zr, Hf], a group of synthetic compounds with strong ion-exchange capabilities. Both hochelagaite (CaNb4O11·nH2O) and ternovite (MgNb4O11·nH2O) have X-ray powder diffraction patterns and cation ratios similar to those of franconite indicating that these minerals probably have similar structures.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atencio, D., Chukanov, N.V., Nestola, F., Witzke, T., Coutinho, J.M.V., Zadov, A.E., Filho, R.R.C. and Färber, G. (2012) Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones Antofagasta, Chile. American Mineralogist, 97, 1925.CrossRefGoogle Scholar
Babechuk, M.G. and Kamber, B.S. (2011) An estimate of 1.9 Ga mantle depletion using the high-fieldstrength elements and Nd–Pb isotopes of ocean floor basalts, Flin Flon Belt, Canada. Precambrian Research, 189, 114139.CrossRefGoogle Scholar
Barshad, I. (1952) Adsorptive and swelling properties of clay-water system. Clays and Clay Minerals, 1, 7077.CrossRefGoogle Scholar
Belovitskaya, Y.V. and Pekov, I.V. (2004) Genetic mineralogy of the burbankite group. New Data on Minerals, 39, 5064.Google Scholar
Brese, N.E. and O’Keefe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Chao, G.Y., Conlon, R.P. and Velthuizen, J. (1990) Mont Saint-Hilaire unknowns. The Mineralogical Record, 21, 363368.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2012) The crystal structure of kraisslite, [4]Zn3(Mn,Mg)25(Fe3+,Al) (As3+O3)2[(Si,As5+)O4]10(OH)16, from Sterling Hill mine, Ogdensburg, Sussex County, New Jersey, USA. Mineralogical Magazine, 76, 28192836.CrossRefGoogle Scholar
Cromer, D.T. and Mann, J.B. (1968) X-ray scattering factors computed from numerical Hartree-Frock wave functions. Acta Crystallographica, A24, 321324.CrossRefGoogle Scholar
Cromer, D.T. and Liberman, D. (1970) Relativistic calculation of anomalous scattering factors for X rays. Journal of Physics and Chemistry, 53, 18911898.CrossRefGoogle Scholar
Dowty, E. (2002) CRYSCON for Windows and Macintosh Version 1.1. Shape Software Kingsport, Tennessee, USA.Google Scholar
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite, Na11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH), a phosphatebearing sorosilicate of the lomonosovite group. The Canadian Mineralogist, 36, 13111320.Google Scholar
Fielicke, A., Meijer, G. and Von Helden, G. (2003) Infrared spectroscopy of niobium oxide cluster cations in a molecular beam: identifying the cluster structures. Journal of the American Chemical Society, 125, 36593667.CrossRefGoogle Scholar
Fukoka, H., Isami, T. and Yamanaka, S. (2000) Crystal structure of a layered perovskite niobate KCa2Nb3O10. Journal of Solid State Chemistry, 151, 4045.CrossRefGoogle Scholar
Haring, M.M.M., McDonald, A.M., Cooper, M.A. and Poirier, G.A. (2012) Laurentianite, [NbO(H2O)]3 (Si2O7)2[Na(H2O)2]3, a new mineral from Mont Saint-Hilaire, Québec: description, crystal-structure determination and paragenesis. The Canadian Mineralogist, 50, 12651280.CrossRefGoogle Scholar
Horváth, L. and Gault, R.A. (1990) The mineralogy of Mont Saint-Hilaire Québec. The Mineralogical Record, 21, 284359.Google Scholar
Horváth, L., Pfenninger-Horváth, E., Gault, R.A. and Tarassoff, P. (1998) Mineralogy of the Saint-Amable Sill, Varennes and Saint-Amable, Québec. The Mineralogical Record, 29, 83118.Google Scholar
Iliev, M., Phillips, M.L.F., Meen, J.K. and Nenoff, T.M. (2003) Raman spectroscopy Na2Nb2O6·H2O and Na2Nb2–xMxO6–x(OH)x·H2O (M = Ti, Hf) ion exchangers. Journal of Physical Chemistry, B 107, 1426114264.CrossRefGoogle Scholar
Jambor, J.L., Sabina, A.P., Roberts, A.C., Bonardi, M., Ramik, R.R. and Sturman, B.D. (1984) Franconite, a new hydrated Na-Nb oxide mineral from Montreal Island, Québec. The Canadian Mineralogist, 22, 239243.Google Scholar
Jambor, J.L., Sabina, A.P., Roberts, A.C., Bonardi, M., Owens, D.R. and Sturman, B.D. (1986) Hochelagaite, a new calium-niobium oxide mineral from Montreal, Québec. The Canadian Mineralogist, 24, 449453.Google Scholar
Jehng, J.M. and Wachs, I.E. (1990) Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 3, 101107.Google Scholar
Masó, N., Woodward, D.I., Várez, A. and West, A.R. (2011) Polymorphism, structural characterization and electrical properties of Na2Nb4O11. Journal of Material Chemistry, 21, 1209612102.CrossRefGoogle Scholar
Megaw, H.D. (1968a) A simple theory of the off center displacement of cation in octahedral environment. Acta Crystallographica, B24, 149153.CrossRefGoogle Scholar
Megaw, H.D. (1968b) The thermal expansion of interatomic bonds, illustrated by experimental evidence from niobates. Acta Crystallographica, A24, 589604.CrossRefGoogle Scholar
Nikandrov, S.N. (1990) Franconite, first find in the USSR. Doklady Academii Nauk SSSR, 305, 700703. [in Russian].Google Scholar
Nyman, M., Tripathi, A., Parise, J.B., Maxwell, R.S., Harrison, W.T.A. and Nenoff, T.M. (2001) A new family of octahedral molecular sieves: Sodium Ti/ZrIV niobates. Jounral of the American Chemical Society, 123, 15291530.CrossRefGoogle Scholar
Nyman, M., Tripathi, A., Parise, J.B., Maxwell, R.S. and Nenoff, T.M. (2002) Sandia octahedral molecular sieves (SOMS): Structural and property effects of charge-balancing the MIV-substituted (M = Ti, Zr) niobate framework. Journal of the American Chemical Society, 124, 17041713.CrossRefGoogle ScholarPubMed
Pekov, I.V. and Podlesnyi, A.S. (2004) Kukisvumchorr deposit: Mineralogy of alkaline pegmatites and hydrothermalites. Mineralogical Almanac, 7, 6065.Google Scholar
Rastsvetaeva, R.K., Tamazyan, R.A., Pushcharovsky, D.Y. and Nadezhina, T.N. (1994) Crystal structure and microtwinning of K-rich nenadkevichite. European Journal of Mineralogy, 6, 503509.CrossRefGoogle Scholar
Salles, F., Douillard, J., Denoyel, R., Bildstein, O., Jullien, M., Beurroies, I. and Damme, H. (2009) Hydration sequence of swelling clays: Evolutions of specific surface area and hydration energy. Journal of Colloid and Interface Science, 333, 510522.CrossRefGoogle ScholarPubMed
Schilling, J., Marks, M.A.W., Wenzel, T., Vennemann, T., Horváth, L., Tarassoff, P., Jacob, D.E. and Markl, G. (2011) Magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire complex: insights into the late-stage evolution of peralkaline rocks. Journal of Petrology, 52, 21472185.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies in interatomic distances in halides and chalogenides. Acta Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (1997) SHELX-97: A program for crystal structure refinement. University of Göttingen, Göttingen, Germany.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. V. Titanium silicates: The crystal chemistry of nacareniobsite- (Ce). The Canadian Mineralogist, 46, 13331342.CrossRefGoogle Scholar
Subbotin, V.V., Voloshin, A.V., Pakhomovskii, Y.A., Men’shikov, Y.P. and Subbotina, G.F. (1997) Ternovite, (Mg,Ca)Nb4O11·nH2O, a new mineral and other hydrous tetraniobates from carbonatites of the Vuoriyarvi massif, Kola Peninsula, Russia. Neues Jahrbuch für Mineralogie, 2, 4960.CrossRefGoogle Scholar
Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Pautov, L.A. and Agakhanov, A.A. (2004) A novel [Si18O45]18- sheet in the crystal structure of zeravshanite, Cs4Na2Zr3[Si18O45](H2O)2. The Canadian Mineralogist, 42, 125134.CrossRefGoogle Scholar
Williams, Q. (1995) Infrared, Raman and optical spectroscopy of Earth materials. Pp. 291–302 in: Mineral Physics and Crystallography: a Handbook of Physical Constants (T.J. Ahrens, editor), AGU Reference Shelf Vol 2. American Geophysical Union, Washington, D.C. Google Scholar
Xu, H., Nyman, M., Nenoff, T.M. and Navrotsky, A. (2004) Prototype sandia octahedral molecular sieve (SOMS) Na2Nb2O6·H2O: Synthesis, structure and thermodynamic stability. Chemistry of Materials, 16, 20342040.CrossRefGoogle Scholar
Yim, H., Yoo, S., Nahm, S., Hwang, S., Yoon, S. and Choi, J. (2013) Synthesis and dielectric properties of layered HCa2Nb3O10 structure ceramics. Ceramics International, 39, 611614.CrossRefGoogle Scholar