Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T19:53:12.109Z Has data issue: false hasContentIssue false

Fogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, a Group I TS-block mineral from the Lagoa do Fogo, the Fogo volcano, São Miguel Island, the Azores: Description and crystal structure

Published online by Cambridge University Press:  02 January 2018

F. Cámara*
Affiliation:
Dipartimento di Scienze Mineralogiche e Petrologiche, Università di Torino, I-10125, Torino, Italy CrisDi, Interdepartmental Centre for the Research and Development of Crystallography, via Pietro Giuria 5, I-10125, Torino, Italy
E. Sokolova
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2 Canada
Y. A. Abdu
Affiliation:
Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2 Canada
T. Charrier
Affiliation:
Le Mange Cailloux, 1 rue de la Belle Allée, 85290 Mortagne-sur-Sèvre, France
V. Dorcet
Affiliation:
Institut des Sciences Chimiques de Rennes – UMR 6226 CNRS-Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex France
J. -F. Carpentier
Affiliation:
Institut des Sciences Chimiques de Rennes – UMR 6226 CNRS-Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex France
*

Abstract

Fogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, is a new mineral from the Lagoa do Fogo, São Miguel Island, the Azores. It occurs in cavities as highly elongated (on [001]) prisms, up to 2000 μm long and 50 μm× 50 μm in cross-section, associated with sanidine, astrophyllite, fluornatropyrochlore, ferrokentbrooksite, quartz and ferro-katophorite. Crystals are generally transparent and colourless, with vitreous lustre, occasionally creamy white. Fogoite-(Y) has a white streak, splintery fracture and very good {100} cleavage. Mohs hardness is ∼5. Dcalc. = 3.523 g/cm3. It is biaxial (+) with refractive indices (λ = 590 nm) α = 1.686(2), β = 1.690(2), γ = 1.702(5); 2Vmeas. = 57(1)° and 2Vcalc. = 60°. It is nonpleochroic. Fogoite-(Y) is triclinic, space group P1, a = 9.575(6), b = 5.685(4), c = 7.279(5) Å, α = 89.985(6), β = 100.933(4), γ = 101.300(5)°, V = 381.2 (7) Å3. The six strongest reflections in the powder X-ray diffraction data [d (Å), I, (hkl)] are: 2.954, 100, (1̄1̄2, 3̄10); 3.069, 42, (300, 01̄2); 2.486, 24, (310, 21̄2); 3.960, 23, (1̄1̄1, 2̄10); 2.626, 21, (2̄20); 1.820, 20, (1̄04). Electron microprobe analysis gave the following empirical formula calculated on 18 (O + F) (Na2.74Mn0.15)∑2.89Ca2[Y1.21(La0.01Ce0.03Nd0.03Sm0.02Gd0.08Dy0.08Er0.05Yb0.04Lu0.01)∑0.35Mn0.16Zr0.11Na0.09Fe0.072+Ca0.01]∑2(Ti0.76Nb0.23Ta0.01)∑1(Si4.03O14)O1.12F2.88, Z = 1. The crystal structure was refined on a twinnedcrystal to R1 = 2.81% on the basis of 2157 unique reflections (Fo > 4σFo) and is a framework of TS (Titanium Silicate) blocks, which consist of HOH sheets (H – heteropolyhedral, O – octahedral) parallel to (100). In the O sheet, the the [6]MO(1) site is occupied mainly by Ti, <MO(1)–ϕ> = 1.980 Å, and the [6]MO(2) and [6]MO(3) sites are occupied by Na and Na plus minor Mn, <MO(2)–ϕ>= 2.490 Å and <MO(3)–ϕ> = 2.378 Å. In the H sheet, the two [4]Si sites are occupied by Si, with <Si–O> = 1.623 Å; the [6]MH site is occupied by Y and rare-earth elements (Y > REE), with minor Mn, Zr, Na, Fe2+ and Ca, <MH–ϕ> = 2.271 Å and the [6]AP site is occupied by Ca, <AP–ϕ> = 2.416 Å. The MH and AP octahedra and Si2O7 groups constitute the H sheet. The ideal compositions of the O and two H sheets are Na3Ti(OF)F2 and Y2Ca2(Si2O7)2 apfu. Fogoite-(Y) is isostructural with götzenite and hainite. The mineral is named after the type locality, the Fogo volcano in the Azores.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Monem, A.A., Fernandez, L.A. and Boone, G.M. (1975) K-Ar ages from the eastern Azores groups (Santa Maria, São Miguel and the Formigas Islands). Lithos, 8, 247254.CrossRefGoogle Scholar
Bellezza, M., Franzini, M., Larsen, A.O., Merlino, S. and Perchiazzi, N. (2004a) Grenmarite, a new member of the götzenite-seidozerite-rosenbuschite group from the Langesundsfjord district, Norway: definition and crystal structure. European Journal of Mineralogy, 16, 971978.CrossRefGoogle Scholar
Bellezza, M., Merlino, S. and Perchiazzi, N. (2004b) Chemical and structural study of the Zr, Ti-disilicates in the venanzite from Pian di Celle, Umbria, Italy. European Journal of Mineralogy, 16, 957969.CrossRefGoogle Scholar
Blumrich, J. (1893) Die Phonolithe des Friedländer Bexirkes in Nordböhmen. Tschermaks Mineralogische und Petrographische Mitteilungen, 13, 465–95.Google Scholar
Brögger, W.C. (1887) Forelöbig meddelelse om miner-alerne på de sydnorske augit-og nefelinsyeniters grovkornige gange. Geologiska Föreningens I Stockholm Förhandlingar, 9(4) 247274.CrossRefGoogle Scholar
Brögger, W.C. (1890) Die miniralien der syenitpegmatitgänge der südnorwegischen augit-und nephelinsienite. Zeitschrift für Kristallographie und Mineralogie, 16, 7494.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II (M. O'Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2011) From structure topology to chemical composition. XII. Titanium silicates: the crystal chemistry of rinkite, Na2Ca4REETi (Si2O7)2OF3 . Mineralogical Magazine, 75, 27552774.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Hawthorne, F.C., Rowe, R., Grice, J.D. and Tait, K.T. (2013) Veblenite, K2Q2Na (Fe25þFe43þMn27þ□)Nb3Ti(Si2O7)2(Si8O22)2O6(OH)10 (H2O)3, a new mineral from Seal Lake, Newfoundland and Labrador: mineral description, crystal structure, and a new veblenite (Si8O22) ribbon. Mineralogical Magazine, 77, 29552974.CrossRefGoogle Scholar
Christiansen, C.C. and Rønsbo, J.G. (2000) On the structural relationship between götzenite and rinkite. Neues Jahrbuch für Mineralogie Monatshefte, 496-506.Google Scholar
Christiansen, C.C., Gault, R.A., Grice, J.D. and Johnsen, O. (2003a) Kochite, a new member of the rosen-buschite group from the Werner Bjerge alkaline complex, East Greenland. European Journal of Mineralogy, 15, 551554.CrossRefGoogle Scholar
Christiansen, C.C., Johnsen, O. and Makovicky, E. (2003b) Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist, 41, 12031224.CrossRefGoogle Scholar
Fernandez, L.A. (1980) Geology and petrology of the Nordeste volcanic complex, São Miguel, Azores. Geological Society of American Bulletin, 91, 675680.2.0.CO;2>CrossRefGoogle Scholar
Lorenzen, J. (1884) Untersuchung einiger Mineralien aus Kangerdluarsuk in Grönland. Zeitschrift für Kristallographie, 9, 243254.Google Scholar
Mesto, E., Kaneva, E., Lacalamita, M., Schingaro, M., Scordari, F and Vladykin, N. (2015) Structural disorder in narsarsukite from Murun (Russia). Periodico di Mineralogia, ECMS2015, 123124.Google Scholar
Moore, R.B. (1990) Volcanic geology and eruption frequency, São Miguel, Azores. Bulletin of Volcanology, 52, 602614.CrossRefGoogle Scholar
Moore, R.B. (1991) Geology of three Late Quaternary stratovolcanoes on São Miguel, Azores. United States Geological Survey Bulletin, 1900, Government Printing Office, Washington DC, 46 pp.Google Scholar
Petersen, O.V, Ronsbo, J.G. and Leonardsen, E.S. (1989) Nacareniobsite-(Ce), a new mineral species from the Ilímaussaq alkaline complex, South Greenland, and its relation to mosandrite and the rinkite series. Neues Jahrbuch Neues für Mineralogie—Monatshefte, 8496.Google Scholar
Pouchou, J.L. and Pichoir, E (1985) “PAP” j(ρΖ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Ridolfist, F., Renzulli, A., Santi, P. and Upton, B.G.J. (2003) Evolutionary stages of crystallization of weakly peralkaline syenites: evidence from ejecta in the plinian deposits of Agua de Pau volcano (São Miguel, Azores Islands). Mineralogical Magazine, 67, 749767.CrossRefGoogle Scholar
Sahama, T.G. and Hytönen, M.A. (1957) Götzenite and combeite, two new silicates from the Belgian Congo. Mineralogical Magazine, 31, 503510.CrossRefGoogle Scholar
Semenov, E.I., Kazakova, M.E. and Simonov, V.I. (1958) A new zirconium mineral, seidozerite, and other minerals of the wöhlerite group in alkaline pegmatites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 87(5) 590597 [in Russian].Google Scholar
Sheldrick, G.M. (2004) CELL_NOW. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F (2013) From structure topology to chemical composition. XVI. New developments in the crystal chemistry and prediction of new structure topologies for titanium disilicate minerals with the TS block. The Canadian Mineralogist, 51, 861891.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. V Titanium silicates: crystal chemistry of nacareniobsite-(Ce). The Canadian Mineralogist, 46, 13331342.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2013) From structure topology to chemical composition. XIV. Titanium silicates: refinement of the crystal structure and revision of the chemical formula of mosandrite, (Ca3Wsis)[(H20)2Ca05no.5]Ti(Si207)2(OH)2(H20)2, a Group-I mineral from the Saga mine, Morje, Porsgrunn, Norway. Mineralogical Magazine, 77, 27532771.CrossRefGoogle Scholar
Walker, G.P.L. and Croasdale, R. (1970) Two pliniantype eruptions in the Azores. Journal of the Geological Society, 127, 1755.CrossRefGoogle Scholar
Widom, E., Schmincke, H.U. and Gill, J.B. (1992) Processes and timescales in the evolution of a chemical zoned trachyte: Fogo-A, São Miguel, Azores. Contributions to Mineralogy and Petrology, 111, 311328.CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Cámara et al. supplementary material

Anisotropic displacement factors

Download Cámara et al. supplementary material(File)
File 47.6 KB
Supplementary material: File

Cámara et al. supplementary material

Structure factors file

Download Cámara et al. supplementary material(File)
File 32.6 KB
Supplementary material: File

Cámara et al. supplementary material

Crystallographic information file

Download Cámara et al. supplementary material(File)
File 114.3 KB