Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T22:38:01.820Z Has data issue: false hasContentIssue false

Flurlite, Zn3Mn2+Fe3+(PO4)3(OH)2·9H2O, a new mineral from the Hagendorf Süd pegmatite, Bavaria, with a schoonerite-related structure

Published online by Cambridge University Press:  02 January 2018

I. E. Grey*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
E. Keck
Affiliation:
Algunderweg 3, D-92694 Etzenricht, Germany
W. G. Mumme
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
A. Pring
Affiliation:
Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
C. M. Macrae
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
R. W. Gable
Affiliation:
School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
J. R. Price
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
*

Abstract

Flurlite, ideally Zn3Mn2+Fe3+(PO4)3(OH)2·9H2O, is a new mineral from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Flurlite occurs as ultrathin (<1 μm) translucent platelets that form characteristic twisted accordion-like aggregates. The colour varies from bright orange red to dark maroon red. Cleavage is perfect parallel to (001). The mineral occurs on mitridatite and is closely associated with plimerite. Other associated minerals are beraunite, schoonerite, parascholzite, robertsite and altered phosphophyllite. The calculated density of flurlite is 2.84 g cm–3. It is optically biaxial (–), α = 1.60(1), β= 1.65(1) and γ = 1.68(1), with weak dispersion and parallel extinction, Xc, Ya, Zb. Pleochroism is weak, with colours: X = pale yellow, Y = pale orange, Z = orange brown. Electron microprobe analyses (average of seven) with FeO and Fe2O3 apportioned and H2O calculated on structural grounds, gave ZnO 25.4, MnO 5.28, MgO 0.52, FeO 7.40, Fe2O3 10.3, P2O5 27.2, H2O 23.1, total 99.2 wt.%. The empirical formula, based on 3 P a.p.f.u. is Zn2.5Mn2+0.6Fe2+0.8Mg0.1Fe3+(PO4)3(OH)2·9H2O. Flurlite is monoclinic, P21/m, with the unit-cell parameters (at 100 K) of a = 6.3710(13), b = 11.020(2), c = 13.016(3) Å, β = 99.34 (3)°. The strongest lines in the X-ray powder diffraction pattern are [dobs in Å(I) (hkl)] 12.900(100)(001); 8.375(10)(011); 6.072(14)(101); 5.567(8)(012); 4.297(21)(003); 2.763(35)(040). Flurlite (R1 = 0.057 for 995 F > 4σ(F)) has a heteropolyhedral layer structure, with layers parallel to (001) and with water molecules packing between the layers. The slab-like layers contain two types of polyhedral chains running parallel to [100]: (a) chains of edge-sharing octahedra containing predominantly Zn and (b) chains in which Fe3+-centred octahedra share their apices with dimers comprising Zn-centred trigonal bipyramids sharing an edge with PO4 tetrahedra. The two types of chains are interconnected by corner-sharing along [010]. A second type of PO4 tetrahedron connects the chains to MnO2(H2O)4 octahedra along [010] to complete the structure of the (001) slabs. Flurlite has the same stoichiometry as schoonerite, but with dominant Zn rather than Fe2+ in the edge-shared chains. Schoonerite has a similar heteropolyhedral layer structure with the same layer dimensions 6.4 × 11.1 Å. The different symmetry (orthorhombic, Pmab) for schoonerite reflects a different topology of the layers.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernard, J.H. and Hyrsl, J. (2004) Minerals and their localities (YT. King, editor). Granit, Prague, Czech Republic.Google Scholar
Birch, W.D., Grey, I.E., Mills, S.J., Pring, A. Wilson, N.C. and Keck, E. (2011) Nordgauite, MnAl2(PO4)2(F,OH)2 • 5H2O, a new mineral from the Hagendorf Siid pegmatite, Bavaria, Germany: description and crystal structure. Mineralogical Magazine, 75, 269278.CrossRefGoogle Scholar
Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849854.CrossRefGoogle Scholar
Frondel, C. (1958) Strunzite, a new mineral. Naturwissenschaften, 45, 37.CrossRefGoogle Scholar
Kampf, A.R. (1977) Schoonerite: its atomic arrangement. American Mineralogist, 62, 250255.Google Scholar
Kampf, A.R., Mills, S.J., Simmons, W.B., Nizamoff, J.W. and Whitmore, R.W. (2012) Falsterite, Ca2MgMnl+(FeoH 5Feo-5)4Zn4(P04)8(OH)4(H20)i4, a new secondary phosphate mineral from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 97, 496502.CrossRefGoogle Scholar
Kastning, J. and Schliiter, J. (1994) Die Mineralien von Hagendorf und ihre Bestimmung. Schriften des Mineralogischen Museums der Universitat Hamburf Band 2, C. Weise Verlag, Munich, 95 pp.Google Scholar
Laubmann, H. and Steinmetz, H. (1920) Phosphat-fuhrende pegmatite des Oberfalzer und Bayerischen Waldes. Zeitschrifi fur Krystallografie und Mineralogie, 55, 523586.Google Scholar
Laugier, I andBochu, B. (2000) LMGF'-Program for the interpretation of X-ray experiments. INPG/Laboratoire des Materiaux et du Genie Physique, St Martin d'Heres, France.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IY The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Moore, P.B. and Kampf, A.R. (1977) Schoonerite, a new zinc-manganese-iron phosphate mineral. American Mineralogist, 62, 246249.Google Scholar
Miicke, A. (1981) The paragenesis of the phosphate minerals of the Hagendorf pegmatite—a general view. Chemie der Erde, 40, 217234.Google Scholar
Mullbauer, F. (1925) Die Phosphatpegmatite von Hagendorf i. Bayern (neue Beobachtungen). Zeitschrift fur Krystallographie, 61, 331336.Google Scholar
Petficek, Y andDusek, M. (2006) JANA2006. Structure Determinations Software Programs. Institute of Physics, Academy of Sciences of the Czech Republic, Prague.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement wit. SHELXL. Ada Crystallographica, C71, 38.Google Scholar
Strunz, H. (1950) Scholzit, eine neue Mineralart. Fortschritte der Mineralogie, 27, 31.Google Scholar
Strunz, H. (1954a) Hagendorfit, ein neues Mineral der Varulith-Huhnerkobelit-Reihe. Neues Jahrbuch fur Mineralogie Monatshafte, 252—255.Google Scholar
Strunz, H. (19546) Laueit, MnFe2III(PO4)2(OH)2-8H2O, ein neues Mineral. Naturwissenschaften, 41, 256.Google Scholar
Strunz, H. (1956) Pseudolaueit, ein neues Mineral. Naturwissenschaften, 43, 128.CrossRefGoogle Scholar
Yakovenchuk, YN., Keck, E., Krivovichev, S.Y, Pakhomovsky, YA., Selivanova, E.A., Mikhailova, I A., Chernyatieva, A.R and Ivanyuk, G.Yu. (2012) Whiteite-(CaMnMn),CaMnMn2Al2[PO4]4(OH)2-8H2O, a new mineral from the Hagendorf-Siid granitic pegmatite, Germany. Mineralogical Magazine, 76, 27612771.CrossRefGoogle Scholar
Supplementary material: File

Grey et al. supplementary material

CIF

Download Grey et al. supplementary material(File)
File 498.2 KB