Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:45:54.373Z Has data issue: false hasContentIssue false

First crystal-structure determination of chromites from an acapulcoite and ordinary chondrites

Published online by Cambridge University Press:  02 January 2018

Davide Lenaz*
Affiliation:
Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
Francesco Princivalle
Affiliation:
Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
Birger Schmitz
Affiliation:
Division of Nuclear Physics, Department of Physics, Lund University, Lund, Sweden Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, HI, USA
*

Abstract

We report the first crystal-structure determinations of chromites from an acapulcoite and from ordinary chondrites. Cell edges range from 8.3212 (3) to 8.3501 (1) Å, while the oxygen positional parameters are in the range 0.2624 (3) to 0.26298 (9). Their compositions show they are very close to the chromite end-member FeCr2O4 with limited Al and Mg content. Titanium oxide content exceeds 1 wt.%, whereas the amount of Fe3+ is negligible. Extraterrestrial chromite is distinguished readily from terrestrial analogues on the basis of the cell edge and oxygen positional parameter. These distinctions will facilitate ongoing attempts to reconstruct the palaeoflux of meteorites to Earth from resistant extraterrestrial spinel grains recovered from ancient sediments.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, N.M., Blond, P.A. and Rietmeijer, F.J.M. (2014) Effects of shock metamorphism on the matrix of CR chondrites: GRA 06100. 45th Lunar and Planetary Conference, Texas, USA, Abstract 2753 [available at http://www.hou.usra.edu/meetings/lpsc2014/pdf/2753.pdf]. Alwmark, C. and Schmitz, B. (2007) Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden. Earth and Planetary Science Letters, 253, 291303.Google Scholar
Alwmark, C. and Schmitz, B. (2009) Relict silicate inclusions in extraterrestrial chromite and their use in the classification of fossil chondritic material. Geochimica et Cosmochimica Acta, 73, 14721486.CrossRefGoogle Scholar
Andreozzi, G.B. and Lucchesi, S. (2002) Intersite distribution of Fe2+ and Mg in the spinel (sensu stricto)-hercynite series by single-crystal X-ray diffraction. American Mineralogist, 87, 11131120.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Ferrini, V. and Lucchesi, S. (2004) Behavior of cation vacancy in kenotetrahedral Cr-spinels from Albanian eastern belt ophiolites. American Mineralogist, 89, 13671373.CrossRefGoogle Scholar
Bridges, J.C., Schmitz, B., Hutchison, R., Greenwood, R.C., Tassinari, M. and Franchi, I.A. (2007) Petrographic classification of Middle Ordovician fossil meteorites from Sweden. Meteoritics & Planetary Science, 42, 17811789.CrossRefGoogle Scholar
Bunch, T.E. and Keil, K. (1971) Chromite and ilmenite in non-chondri t i c meteorites. American Mineralogist, 56, 146157.Google Scholar
Bunch, T.E., Keil, K. and Snetsinger, K.G. (1967) Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochimica et Cosmochimica Acta, 31, 15691582.CrossRefGoogle Scholar
Bunch, T.E., Keil, K. and Olsen, E. (1970) Mineralogy and petrology of silicate inclusions in iron meteorites. Contributions to Mineralogy and Petrology, 25, 297340.CrossRefGoogle Scholar
Carbonin, S., Russo, U. and Della Giusta, A. (1996) Cation distribution in some natural spinels from Xray diffraction and Mössbauer spectroscopy. Mineralogical Magazine, 60, 355368.CrossRefGoogle Scholar
Carbonin, S., Menegazzo, G., Lenaz, D. and Princivalle, F. (1999) Crystal chemistry of two detrital Cr-spinels with unusual low values of oxygen positional parameter: Oxidation mechanism and possible clues to their origin. Neues Jahrbuch für Mineralogie Monatshefte, 359371.Google Scholar
Carraro, A. (2003) Crystal chemistry of Cr-spinels from a suite of spinel peridotite mantle xenoliths from the Predazzo Area (Dolomites, Northern Italy). European Journal of Mineralogy, 15, 681688.CrossRefGoogle Scholar
Della Giusta, A., Princivalle, F. and Carbonin, S. (1986) Crystal chemistry of a suite of natural Cr-bearing spinels with 0.15 < Cr < 1.07. Neues Jahrbuch für Mineralogie Abhlandungen, 155, 319330.Google Scholar
Della Giusta, A., Carbonin, S. and Ottonello, G. (1996) Temperature-dependent disorder in a natural Mg-Al-Fe2+-Fe3+-spinel. Mineralogical Magazine, 60, 603616.CrossRefGoogle Scholar
Derbyshire, E.J., O’Driscoll, B., Lenaz, D., Gertisser, R. and Kronz, A. (2013) Compositional heterogeneity in chromitite seams from the Shetland Ophiolite Complex (Scotland): implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite. Lithos, 162-163. 279300.Google Scholar
Dick, H.J.B. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 5476.CrossRefGoogle Scholar
Dodd, R.T. (1969) Metamorphism of the ordinary chondrites: A review. Geochimica et Cosmochimica Acta, 33, 161203.CrossRefGoogle Scholar
Folco, L., D’Orazio, M. and Burroni, A. (2006) Frontier Mountain 93001: A coarse-grained, enstatite-augiteoligoclase-rich, igneous rock from the acapulcoitelodranite parent asteroid. Meteoritics & Planetary Sciences, 41, 11831198.CrossRefGoogle Scholar
Ford, R.L., Benedix, G.K., McCoy, T.J. and Rushmer, T. (2008) Partial melting of H6 ordinary chondrite Kernouvé: constraints on the effects of reducing conditions on oxidized compositions. Meteoritics & Planetary Science, 43, 13991414.CrossRefGoogle Scholar
Greenwood, R.C., Schmitz, B., Bridges, J.C., Hutchison, R. and Franchi, I. (2007) Disruption of the L chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains. Earth and Planetary Science Letters, 262, 204213.CrossRefGoogle Scholar
Greenwood, R.C., Franchi, I.A., Gibson, J.M. and Benedix, G.K. (2012) Oxygen isotope variation in primitive achondrites: the influence of primordial, asteroidal and terrestrial processes. Geochimica et Cosmochimica Acta, 94, 146163.CrossRefGoogle Scholar
Hazen, R.M. and Eldredge, N. (2010) Themes and variations in complex systems. Elements, 6, 4346.CrossRefGoogle Scholar
Hazen, R.M. and Ferry, J.M. (2010) Mineral evolution: Mineralogy in the fourth dimension. Elements, 6, 912.CrossRefGoogle Scholar
Heck, P.R., Schmitz, B., Baur, H., Halliday, A.N. and Wieler, R. (2004) Fast delivery of meteorites to Earth after a major asteroid collision. Nature, 430, 323325.CrossRefGoogle Scholar
Heck, P.R., Ushikubo, T., Schmitz, B., Kita, N.T., Spicuzza, M.J. and Valley, J.W. (2010) A single asteroidal source for extraterrestrial Ordovician chromite grains from Sweden and China: highprecision oxygen three-isotopes SIMS analysis. Geochimica et Cosmochimica Acta, 74, 497509.CrossRefGoogle Scholar
Herd, C.D.K. and Papike, J.J. (1998) Estimates of oxygen fugacity in the basaltic shergottites from electron microprobe oxygen analyses. Workshop on the Issue “Martian meteorites: Where do we stand and where are we going?”. Lunar and Planetary Institute, Houston, Texas, USA. Abstract #7019 [available at http://www.lpi.usra.edu/meetings/marsmet98/pdf/7014.pdf]. Irvine, T.N. (1967) Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Canadian Journal of Earth Science, 4, 71103.Google Scholar
Lavina, B., Salviulo, G. and Della Giusta, A. (2002) Cation distribution and structure modeling of spinel solid solutions. Physics and Chemistry of Minerals, 29, 1018.CrossRefGoogle Scholar
Lenaz, D. and Skogby, H. (2013) Structural changes in the FeAl2O4-FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels. Physics and Chemistry of Minerals, 40, 587595.CrossRefGoogle Scholar
Lenaz, D., Andreozzi, G.B., Mitra, S., Bidyananda, M. and Princivalle, F. (2004a) Crystal chemical and 57Fe Mössbauer study of chromite from the Nuggihalli schist belt (India). Mineralogy and Petrology, 80, 4557.CrossRefGoogle Scholar
Lenaz, D., Skogby, H., Princivalle, F. and Hålenius, U. (2004b) Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series. Physics and Chemistry of Minerals, 31, 633642.CrossRefGoogle Scholar
Lenaz, D., Braidotti, R., Princivalle, F., Garuti, G. and Zaccarini, F. (2007) Crystal chemistry and structural refinement of chromites from different chromitite layers and xenoliths of the Bushveld Complex. European Journal of Mineralogy, 19, 599609.CrossRefGoogle Scholar
Lenaz, D., Logvinova, A.M., Princivalle, F. and Sobolev, N.V. (2009) Structural parameters of chromite included in diamonds and kimberlites from Siberia: A new tool for discriminating ultramafic source. American Mineralogist, 94, 10671070.CrossRefGoogle Scholar
Lenaz, D., De Min, A., Garuti, G., Zaccarini, F. and Princivalle, F. (2010) Crystal chemistry of Cr-spinels from the lherzolite mantle peridotite of Ronda (Spain). American Mineralogist, 95, 13231328.CrossRefGoogle Scholar
Lenaz, D., O’Driscoll, B. and Princivalle, F. (2011) Petrogenesis of the anorthosite-chromitite association: crystal-chemical and petrological insights from the Rum Layered Suite, NW Scotland. Contributions to Mineralogy and Petrology, 162, 12011213.CrossRefGoogle Scholar
Lenaz, D., Garuti, G., Zaccarini, F., Cooper, R.W. and Princivalle, F. (2012) The Stillwater Complex: The response of chromite crystal chemistry to magma injection. Geologica Acta, 10, 3341.Google Scholar
Lenaz, D., Skogby, H., Logvinova, A.M., Sobolev, N.V. and Princivalle, F. (2013) A micro-Mössbauer study of chromites included in diamond and other mantlerelated rocks. Physics and Chemistry of Minerals, 40, 671679.CrossRefGoogle Scholar
Lenaz, D., Adetunji, J. and Rollinson, H. (2014a) Determination of Fe3+/SFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite. Contributions to Mineralogy and Petrology, 167, 958.CrossRefGoogle Scholar
Lenaz, D., Andreozzi, G.B., Bidyananda, M. and Princivalle, F. (2014b) Oxidation degree of chromite from Indian ophiolites: a crystal chemical and 57Fe Mössbauer study. Periodico di Mineralogia, 83, 241255.Google Scholar
Lenaz, D., Youbi, N., De Min, A., Boumehdi, M.A. and Ben Abbou, M. (2014c) Low intra-crystalline closure temperatures of Cr-bearing spinels from the mantle xenoliths of the Middle Atlas Neogene-Quaternary Volcanic Field (Morocco): A mineralogical evidence of a cooler mantle beneath the West African Craton. American Mineralogist, 99, 267275.CrossRefGoogle Scholar
McCoy, T.J. (2010) Mineralogical evolution of meteorites. Elements, 6, 1923.CrossRefGoogle Scholar
McCoy, T.J., Keil, K., Clayton, R.N. and Mayeda, T.K. (1993) Classification parameters for acapulcoites and lodranites: the cases of FRO 90011, EET 84302 and ALH A81187/84190. XXIV Lunar and Planetary Science Conference, Houston, Texas, USA, 945946. Abstract 1474 [available at http://www.lpi.usra.edu/meetings/lpsc1993/pdf/1474.pdf].Google Scholar
North, A.C.T., Phillips, D.C. and Scott-Mattews, F. (1968) A semi-empirical method of absorption correction. Acta Crystallographica, A24, 351352.CrossRefGoogle Scholar
O’Neill, H.St.C. and Navrotsky, A. (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. American Mineralogist, 69, 733753.Google Scholar
Palme, H., Suess, H.E. and Zeh, H.D. (1981) Abundances of the elements in the solar system. Pp. 257272. in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 2 Astronomy and Physics (K. Schaifers and H.H. Vogt, editors). Springer Verlag, Berlin-Heidelberg.Google Scholar
Papike, J.J., Ryder, G. and Shearer, C.K. (1998) Lunar samples. Pp. 5-001-5. 234 in: Planetary Materials (J.J. Papike, editor). Reviews in Mineralogy, 36. Mineralogical Society of America, Washington, DC.Google Scholar
Papike, J.J., Karner, J.M. and Shearer, C.K. (2005) Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. American Mineralogist, 90, 277290.CrossRefGoogle Scholar
Prince, E. (2004) International Tables for X-ray Crystallography. Volume C: Mathematical, Physical and Chemical Tables. 3rd ed. Sprinter, Dordrecht, The Netherlands. Princivalle, F., Della Giusta, A. and Carbonin, S. (1989) Comparative crystal chemistry of spinels from some suites of ultramafic rocks. Mineralogy and Petrology, 40, 117126.Google Scholar
Princivalle, F., Della Giusta, A., De Min, A. and Piccirillo, E.M. (1999) Crystal chemistry and significance of cation ordering in Mg-Al rich spinels from high-grade hornfels (Predazzo-Monzoni, NE Italy). Mineralogical Magazine, 63, 257262.CrossRefGoogle Scholar
Princivalle, F., De Min, A., Lenaz, D., Scarbolo, M. and Zanetti, A. (2014) Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188, 314.CrossRefGoogle Scholar
Rubin, A.E. (2007) Petrogenesis of acapulcoites and lodranites: a shock-melting model. Geochimica et Cosmochimica Acta, 71, 23832401.CrossRefGoogle Scholar
Schmitz, B. (2013) Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chemie der Erde, 73, 113135.CrossRefGoogle Scholar
Schmitz, B. and Häggström, T. (2006) Extraterrestrial chromite in Middle Ordovician limestone at Kinnekulle, southern Sweden-traces of a major asteroid breakup event. Meteoritics & Planetary Science, 41, 455466.CrossRefGoogle Scholar
Schmitz, B., Tassinari, M. and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth and Planetary Science Letters, 194, 115.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Tokonami, M. (1965) Atomic scattering factor for O-2. Acta Crystallographica, 19, 486. Uchida, H., Lavina, B., Downes, R.T. and Chesley, J. (2005) Single-crystal X-ray diffraction of spinels from the San Carlos Volcanic Field, Arizona: Spinel as a geothermometer. American Mineralogist, 90, 19001908.Google Scholar
Urusov, V.S. (1983) Interaction of cation on octahedral and tetrahedral sites in simple minerals. Physics and Chemistry of Minerals, 9, 15.CrossRefGoogle Scholar
Weill, D.F., Grieve, R.A., McCallum, I.S. and Bottinga, Y. (1971) Mineralogy-petrology of lunar samples. Microprobe studies of samples 12021 and 12022; viscosity of melts of selected lunar compositions. Proceedings of the Second Lunar Science Conference, 1, 413430.Google Scholar
Wlotzka, F. (2005) Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: equilibration temperatures of petrologic types 3.7 to 6. Meteoritics & Planetary Science, 40, 16731702.CrossRefGoogle Scholar
Yurimoto, H., Rubin, A.E., Itoh, S. and Wasson, J.T. (2001) Non-stoichiometric Al-rich spinel in an ultrarefractory inclusion from CO chondrite. 32nd Lunar and Planetary Science Conference, Houston, Texas, Abstract 1557 [available from http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1557.pdf]. S18 Bastos Neto, A.C., Pereira, V.P., Ronchi, L.H., Lima, E.F. and Frantz, J.L. (2009) The world-class Sn-Nb-Ta-F(Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas State, Brazil. The Canadian Mineralogist, 47, 13291357.Google Scholar