Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-05-02T23:51:58.403Z Has data issue: false hasContentIssue false

Ferriphoxite and carboferriphoxite: two new oxalato–phosphate minerals from the Rowley mine, Arizona, USA

Published online by Cambridge University Press:  11 November 2024

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA;
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Joe Marty
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
*
Corresponding author: Anthony R. Kampf; Email: [email protected]

Abstract

Ferriphoxite, [(NH4)2K(H2O)][Fe3+(HPO4)2(C2O4)], and carboferriphoxite, [(NH4)K(H2CO3)][Fe3+(HPO4)(H2PO4)(C2O4)], are new mineral species from the Rowley mine, Maricopa County, Arizona, USA. They occur with antipinite, aphthitalite, baryte, fluorite, hematite and quartz in an unusual bat-guano-related, post-mining assemblage. Ferriphoxite occurs as rectangular blades, up to ∼0.1 mm in length, typically forming sprays. Carboferriphoxite occurs as needles or blades, up to ∼0.2 mm in length, typically forming fan- and bowtie-like sprays. Both species are colourless with white streak, vitreous lustre, ∼2 Mohs hardness, brittle tenacity and splintery fracture. Ferriphoxite has three good cleavages ({100}, {010} and {001}) and carboferriphoxite has two good cleavages (probably {100} and {001}). Both species have a measured density of 2.14(2) g·cm–3. Ferriphoxite is biaxial (+) with α = 1.524(3), β = 1.560(3), γ = 1.608(3) and 2Vmeas. = 83.9(4)°. Carboferriphoxite is biaxial (+) with α = 1.525(3), β = 1.555(calc), γ = 1.630(3) and 2Vmeas. = 67(1)°. Electron probe microanalysis gave {[(NH4)2.13K0.87]Σ3.00(H2O)} {(Fe3+0.95Al0.05)Σ1.00(HPO4)2(C2O4)} for ferriphoxite and {[(NH4)1.12K0.88]Σ2.00(H2CO3)} {(Fe3+0.78Al0.22)Σ1.00(HPO4)(H2PO4)(C2O4)} for carboferriphoxite. Ferriphoxite is monoclinic, P21/c, with a = 11.389(5), b = 6.352(3), c = 18.716(9), β = 102.887(9)°, V = 1319.8(11) Å3 and Z = 4. Carboferriphoxite is triclinic, P$\bar 1$, with a = 6.4405(3), b = 9.399(5), c = 11.839(6) Å, α = 95.763(10), β = 92.314(10), γ = 100.665(8)°, V = 695.6(6) Å3 and Z = 2. The structures of ferriphoxite (R1 = 0.0678 for 1850 I > 2σI reflections) and carboferriphoxite (R1 = 0.0427 for 3602 I > 2σI reflections) both contain double-strand chains of corner-sharing Fe3+O6 octahedra and PO3(OH) tetrahedra. The chain in ferriphoxite is decorated by PO3OH tetrahedra and C2O4 groups and that in carboferriphoxite is decorated by PO2(OH)2 tetrahedra and C2O4 groups. The interstitial units in both structures contain K+ and NH4+ cations along with a H2O group in ferriphoxite and an H2CO3 group in carboferriphoxite.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Peter Leverett

References

Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O…O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Frost, R.L. and Hales, M.C. and Wain, D.L. (2008a) Raman spectroscopy of smithsonite. Journal of Raman Spectroscopy, 39, 108114.Google Scholar
Frost, R.L., Locke, A. and Martens, W.N. (2008b) Synthesis and Raman spectroscopic characterisation of the oxalate mineral wheatleyite Na2Cu2+(C2O4)2·2H2O. Journal of Raman Spectroscopy, 39, 901908.Google Scholar
Frost, R.L., Palmer, S.J. and Pogson, R.E. (2011) Raman spectroscopy of newberyite Mg (PO3OH)·3H2O: A cave mineral. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 11491153.Google Scholar
Gagné, O.C. and F.C, Hawthorne (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García-Rodríguez, L., Á., Rute-Pérez, Piñero, J.R. and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Kampf, A.R., Cooper, M.A., Nash, B.P., Cerling, T., Marty, J., Hummer, D.R., Celestian, A.J., Rose, T.P. and Trebisky, T.J. (2017) Rowleyite, [Na(NH4,K)9Cl4][V5+,4+2(P,As)O8]6 ·n[H2O,Na,NH4,K,Cl], a new mineral with a mesoporous framework structure. American Mineralogist, 102, 10371044.Google Scholar
Kampf, A.R., Cooper, M.A., Rossman, R.R., Nash, B.P., Hawthorne, F.C. and Marty, J. (2019a) Davidbrownite-(NH4), (NH4,K)5(V4+O)2(C2O4)[PO2.75(OH)1.25]4·3H2O, a new phosphate-oxalate mineral from the Rowley mine, Arizona, USA. Mineralogical Magazine, 84, 869877.Google Scholar
Kampf, A.R., Celestian, A.J., Nash, B.P. and Marty, J. (2019b) Phoxite, (NH4)2Mg2(C2O4)(PO3OH)2(H2O)4, the first phosphate-oxalate mineral. American Mineralogist, 103, 973979.Google Scholar
Kampf, A.R., Celestian, A.J., Nash, B.P. and Marty, J. (2021a) Allantoin and natrosulfatourea, two new bat–guano minerals from the Rowley mine, Maricopa County, Arizona, U.S.A. The Canadian Mineralogist, 59, 603616.Google Scholar
Kampf, A.R., Cooper, M.A., Celestian, A.J., Nash, B.P. and Marty, J. (2021b) Thebaite-(NH4), (NH4,K)3Al(C2O4)(PO3OH)2(H2O), a new phosphate-oxalate mineral from the Rowley mine, Arizona, USA. Mineralogical Magazine, 85, 379386.Google Scholar
Kampf, A.R., Cooper, M.A., Celestian, A.J., Ma, C. and Marty, J. (2022a) Dendoraite-(NH4), a new phosphate-oxalate mineral related to thebaite-(NH4) from the Rowley mine, Arizona, USA. Mineralogical Magazine, 86, 531538.Google Scholar
Kampf, A.R., Cooper, M.A., Celestian, A.J., Ma, C. and Marty, J. (2022b) Relianceite-(K), a new phosphate-oxalate mineral related to davidbrownite-(NH4) from the Rowley mine, Arizona, USA. Mineralogical Magazine, 86, 539547.Google Scholar
Kampf, A.R., Ma, C., Hawthorne, F.C. and Marty, J. (2024a) Ferriphoxite, IMA 2023-096. CNMNC Newsletter 77; Mineralogical Magazine, 88. 10.1180/mgm.2024.5Google Scholar
Kampf, A.R., Ma, C., Hawthorne, F.C. and Marty, J. (2024b) Carboferriphoxite, IMA 2023-097. CNMNC Newsletter 77; Mineralogical Magazine, 88. 10.1180/mgm.2024.5Google Scholar
Kampf, A.R., Gu, X., Yang, H., Ma, C. and Marty, J.. (2024c) Ebnerite and epiebnerite: NH4ZnPO4 dimorphs with zeolite-type frameworks from the Rowley mine, Arizona, USA. Mineralogical Magazine, 88, 312318. 10.1180/mgm.2024.15Google Scholar
Sergeeva, A.V., Zhitova, E.S and Bocharov, V.N. (2019) Infrared and Raman spectroscopy of tschermigite, (NH4)Al(SO4)2·12H2O. Vibrational Spectroscopy, 105, .Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Števko, M., Sejkora, J., Uher, P., Cámara, F., Škoda, R. and Vaculovič, T. (2018) Fluorarrojadite-(BaNa), BaNa4CaFe13Al(PO4)11(PO3OH)F2, a new member of the arrojadite group from Gemerská Poloma, Slovakia. Mineralogical Magazine, 82, 863876.Google Scholar
Wilson, W.E. (2020) The Rowley mine, Painted Rock Mountains, Maricopa County, Arizona. Mineralogical Record, 51, 181226.Google Scholar
Yakovenchuk, V.N., Pakhomovsky, Y.A., Konopleva, N.G., Panikorovskii, T.L., Bazai, A., Mikhailova, J.A., Bocharov, V.N., Ivanyuk, G.Yu. and Krivovichev, S.V. (2018) Batagayite, CaZn2(Zn,Cu)6(PO4)4(PO3OH)3·12H2O, a new phosphate mineral from Këster tin deposit (Yakutia, Russia): occurrence and crystal structure. Mineralogy and Petrology, 112, 591601.Google Scholar
Yang, H., Gu, X., Kampf, A.R., Marty, J., Gibbs, R.B. and Downs, R.T. (2023) Edwindavisite, IMA 2023-056. CNMNC Newsletter 75. Mineralogical Magazine, 87. 10.1180/mgm.2023.76Google Scholar
Supplementary material: File

Kampf et al. supplementary material 1

Kampf et al. supplementary material
Download Kampf et al. supplementary material 1(File)
File 279.4 KB
Supplementary material: File

Kampf et al. supplementary material 2

Kampf et al. supplementary material
Download Kampf et al. supplementary material 2(File)
File 131.2 KB
Supplementary material: File

Kampf et al. supplementary material 3

Kampf et al. supplementary material
Download Kampf et al. supplementary material 3(File)
File 395.9 KB
Supplementary material: File

Kampf et al. supplementary material 4

Kampf et al. supplementary material
Download Kampf et al. supplementary material 4(File)
File 95.9 KB