Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T05:55:55.889Z Has data issue: false hasContentIssue false

Ferri-obertiite from the Rothenberg quarry, Eifel volcanic complex, Germany: mineral data and crystal chemistry of a new amphibole end-member

Published online by Cambridge University Press:  02 January 2018

Roberta Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, sede secondaria di Pavia, via Ferrata 1, I-27100 Pavia, Italy
Massimo Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Neil A. Ball
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Günter Blass
Affiliation:
Merzbachstrasse 6, 52246 Eschweiler-St-Joris, Germany
*

Abstract

Pink-orange crystals of a composition within the ferri-obertiite compositional space were found in vesicles in a pale beige silicate vein found from a basalt quarry at Mount Rothenberg, Eifel district, Germany. Associated minerals are potassic feldspar, alpha quartz paramorphic afterbeta quartz, eifelite (the second occurrence after the Caspar quarry at Bellerberg volcano, Eifel region), tridymite, rutile, roedderite and other amphiboles. The ideal formula of ferri-obertiite is ANaBNa2C(Mg3Fe3+Ti)TSi8O22WO2; the empirical formula derived for the holotype specimen from Mount Rothenberg from the results of electron-microprobe analysis and single-crystal structure refinement is A(Na0.76K0.22)∑0.98B(Na1.61Ca0.35Mn0.042+)∑2.00C(Mg3.58Mn0.112+Fe0.623+Ti0.664+Cr0.013+Zn0.01Ni0.01)∑5.00T(Si7.82Ti0.124+Al0.06)∑8.00O22W[O1.26F0.55(OH)0.19]∑2.00. The unit-cell dimensions are a = 9.7901(7), b = 17.9354(13), c = 5.2892(4)Å, β= 104.142(2)°, V = 900.58 (11) Å3. The space group is C2/m, Z = 2. Ferri-obertiite is biaxial (+), with α = 1.664, β = 1.680, γ = 1.722, all ±0.002 and 2V (meas.) = 66.4(3)o, 2V (calc.) = 64.7o.The strongest eight reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 2.704, 100, (151); 3.116, 76, (310); 3.388, 72, (131); 8.931, 72, (110); 2.529, 67, (202); 2.583, 39, (061); 2.160, 38, (261); 3.260, 37, (240). Both the mineral and thename have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2015-079); the rock specimen has been deposited at the Museo di Mineralogia, Dipartimento di Scienze della Terra e dell'Ambiente, Universitàdegli Studi di Pavia, under the code 2015-02.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, K., Gebert, W., Medenbach, O., Schreyer, W. and Hentschel, G. (1983) Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contributions to Mineralogy and Petrology, 82, 252258.CrossRefGoogle Scholar
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J. B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.CrossRefGoogle Scholar
Bruker (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cannillo, E., Germani, G. and Mazzi, F. (1983) New crystallographic software for Philips PW1100 single crystal diffractometer. CNR Centro di Studio per la Cristallografia, Internal Report 2, Pavia, Italy.Google Scholar
Chukanov, N.V., Mukhanova, A.A., Rastsvetaeva, R.K., Belakovskiy, D.I., Möckel, S., Karimova, O.V., Britvin, S.N. and Krivovichev, S.V (2010) Oxyphlogopite, K(Mg,Ti,Fe)3[(Si,Al)4O10] (O,F)2, a new mica-group mineral. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva , 139, 3140 [in Russian]. English translation: (2011. Geology of Ore Deposits, 53, 583590.Google Scholar
Della Ventura, G., Robert, J.L., Bény, J.M., Raudsepp, M. and Hawthorne, F.C. (1993) The OH-F substitution in Ti-rich potassium-richterites: Rietveld structure refinement and FTIR and microRaman spectroscopic studies of synthetic amphiboles in the system K2O-Na2O-CaO-MgO-SiO2-TiO2-H2O-HF. American Mineralogist, 78, 980987.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results. The Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Oberti, R., Zanetti, A. and Czamanske, G.K. (1998) The role of Ti in hydrogen-deficient amphiboles: sodic-calcic and sodic amphiboles from Coyote Peak, California. The Canadian Mineralogist, 36, 12531265.Google Scholar
Hawthorne, F.C., Cooper, M.A., Grice, J.D. and Ottolini, L. (2000) A new anhydrous amphibole from the Eifel region, Germany: description and crystal structure of obertiite, NaNa2(Mg3Fe3+Ti4+)Si8O22O2 . American Mineralogist, 85, 236241.CrossRefGoogle Scholar
Hawthorne, F.C., Ball, N.A. and Czamanske, G.K. (2010) Ferro-obertiite, NaNa2Fe2Fe +Ti)Si8O22O2, a new amphibole species of the amphibole group from Coyote Peak, Humboldt County, California. The Canadian Mineralogist, 48, 301306.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Konzett, J. (1997) Phase relations and chemistry of Ti-rich K-richterite-bearing mantle assemblages: an experimental study to 8 GPa in a Ti-KNCMASH system. Contributions to Mineralogy and Petrology, 128, 385–04.CrossRefGoogle Scholar
Kullerud, K., Zozulya, A., Erambert, M. and Ravna, E.J.K. (2013) Solid solution between potassic alkali amphiboles from the silica-rich Kvaløya lamproite, West Troms Basement Complex, northern Norway. European Journal of Mineralogy, 25, 935945.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles: I. Four-and six-coordinated Ti in richterites. European Journal of Mineralogy, 4, 425439.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C. and Robinson, P. (2010) Crystal structure and crystal chemistry of fluoro-potassic-magnesio-arfvedsonite from Monte Metocha, Xixano region, Mozambique, and discus-sion of the holotype from Quebec, Canada. Mineralogical Magazine, 76, 951960.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Ashley P.M. (2016a) Oxo-mangani-leakeite from the Hoskins mine, New South Wales, Australia: occurrence and mineral description. Mineralogical Magazine, 80, 10131021, https://doi.org.10.1180/minmag.2016.080.037 CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Zema, M. and Della Ventura, G. (2016b) Synthetic potassic-ferro-richterite: 1. Composition, crystal structure refinement and HT behavior by in operando single-crystal X-ray diffraction. The Canadian Mineralogist, 54, 353369.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(ρZ) procedure for improved quantitative microanalysis. Pp. 104160 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA.Google Scholar
Robinson, K., Gibbs, G.V and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Robinson, P., Solli, A., Engvik, A., Erambert, M., Bingen, B., Schiellerup, H. and Njange, F. (2008) Solid solution between potassic-obertiite and potassic-fluoro-magnesioarfvedsonite in a silica-rich lamproite from northeastern Mozambique. European Journal of Mineralogy, 20, 10111018.CrossRefGoogle Scholar
Schüller, W. (2013) Der Rothenberg bei Bell, Eifel. Lapis, 38, 1826.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS Siemens Area Detector Absorption Correction Program. University of Göttingen, Göttingen, Germany.Google Scholar
Williams, P.A., Hatert, F., Pasero, M. and Mills, S.J. (2014) IMA-CNMNC Newsletter No. 22. New minerals and nomenclature modifications approved in 2014. Mineralogical Magazine, 78, 12411248.CrossRefGoogle Scholar
Supplementary material: File

Oberti et al. supplementary material

CIF

Download Oberti et al. supplementary material(File)
File 59.2 KB