Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T19:54:03.568Z Has data issue: false hasContentIssue false

Fe-Mn phosphate associations as indicators of the magmatic-hydrothermal and supergene evolution of the Jálama batholith in the Navasfrías Sn-W District, Salamanca, Spain

Published online by Cambridge University Press:  05 July 2018

T. Llorens*
Affiliation:
Department of Geology, Faculty of Sciences, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
M.C. Moro
Affiliation:
Department of Geology, Faculty of Sciences, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
*

Abstract

The residual melts that remained after the consolidation of the Jálama batholith crystallized to form a group of intra-granitic pegmatite dykes, which are hosted by its outermost facies (the External Unit), and the most evolved residual melts migrated through fractures to form the Cruz del Rayo field of pegmatite dykes, which are hosted by pre-Ordovician low-grade metasedimentary rocks. The increasing activity of phosphorus as magmatic differentiation took place led to the crystallization of primary phosphates, including members of the triplite–zwieselite and the amblygonite–montebrasite series. A strong albitization of the granitic and pegmatite rocks led to the replacement of the primary assemblage by other phosphates such as alluaudite. The influx of post-magmatic hydrothermal fluids, produced quartz veins, gave rise to the crystallizationof ore minerals and triplite, and altered the granites, aplites and pegmatites, replacing some of the phosphate minerals and feldspars and depositing goyazite, montebrasite and childrenite–eosphorite. The interaction of the residual hydrothermal fluids with those from the surrounding metamorphic rocks during later alteration events resulted in the influx of large quantities of Ca and Mg, and produced phosphate assemblages enriched in those elements. Finally, late goyazite, hydroxylapatite and an unidentified Fe-rich phosphate were formed as a result of supergene alterationby percolating meteoric waters, which added Ca, Sr and other elements into the system, and increased fO2.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfonso, P., Melgarejo, J.-C., Yusta, I. and Velasco, F. (2003) Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus Field, Catalonia, Spain. The Canadian Mineralogist, 41, 103116.CrossRefGoogle Scholar
Bajnóczi, B., Seres-Hartai, E. and Nagy, G. (2004) Phosphate bearing minerals in the advanced argillic alteration zones of high-sulphidation type ore deposits in the Carpatho-Pannonian Region. Acta Mineralogica-Petrographica, 41, 8192.Google Scholar
Baldwin, J.R., Hill, P.G., von Knorring, O. and Oliver, G.J.H. (2000) Exotic aluminium phosphates, natromontebrasite, brazilianite, goyazite, gorceixite and crandallite from rare-element pegmatites in Namibia. Mineralogical Magazine, 64, 11471164.CrossRefGoogle Scholar
Bao, S.-X., Zhou, H.-Y., Peng, X.-T., Ji, F.-W. and Yao, H.-Q. (2008) Geochemistry of REE and yttrium in hydrothermal fluids from the Endeavour segment, Juan de Fuca Ridge. Geochemical Journal, 42, 359370.CrossRefGoogle Scholar
Bea, F., Fershtater, G. and Corretgé, L.G. (1992) The geochemistry of phosphorous in granite rocks and the effect of aluminium. Lithos, 29, 4356.CrossRefGoogle Scholar
Bea, F., Pereira, M.D., Corretgé, L.G. and Fershtater, G. (1994) Differentiation of strongly peraluminous, perphosphorus granites: the Pedrobernardo pluton, central Spain. Geochimica et Cosmochimica Acta, 58, 26092627.CrossRefGoogle Scholar
Bouchot, V., Ledru, P., Lerouge, C., Lescuyer, J.-L. and Milési, J.-P. (2005) Late-Variscan mineralizing systems related to orogenic processes: the French Massif Central. Ore Geology Reviews, 27, 169197.CrossRefGoogle Scholar
Burnard, P.G. and Polya, D.A. (2004) Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira. Geochimica et Cosmochimica Acta, 68, 16071615.CrossRefGoogle Scholar
Černý, P. (1989) Characteristics of pegmatite deposits of tantalum. Pp. 195239. in: Lanthanides, Tantalum and Niobium (Möller, P., Černý, P., and Saup, F.é, editors). Springer-Verlag, Berlin, Germany.Google Scholar
Černý, P. (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7, 393416.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Charoy, B., Chaussidon, M., Le Carlier de Veslud, C. and Duthou, J.L. (2003) Evidence of Sr mobility in and around the albite-lepidolite-topaz granite of Beauvoir (France): an in-situ ion and electron probe study of secondary Sr-rich phosphates. Contributions to Mineralogy and Petrology, 145, 673690.CrossRefGoogle Scholar
Colombo, F., Pannunzio-Miner, E.V., Gay, H.D., Lira, R. and Dorais, M.J. (2007) Barbosalita y lipscombita en Cerro Blanco, Córdoba (Argentina): descripción y génesis de fosfatos secundarios en pegmatitas con triplita y apatita. Revista Mexicana de Ciencias Geológicas, 24, 120130.Google Scholar
Crane, M.J., Sharpe, J.L. and Williams, P.A. (2001) Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum, 53, 4956.CrossRefGoogle Scholar
Delacourt, C., Wurm, C., Reale, P., Morcrette, M. and Masquelier, C. (2004) Low temperature preparation of optimized phosphates for Li-battery applications. Solid State Ionics, 173, 113118.CrossRefGoogle Scholar
Dill, H.G., Gerdes, A. and Weber, B. (2007) Cu-Fe-U phosphate mineralization of the Hagendorf-Pleystein pegmatite province, Germany: with special reference to laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of limonite-cored torbernite. Mineralogical Magazine, 71, 371387.CrossRefGoogle Scholar
Dill, H.G., Melcher, F., Gerdes, A. and Weber, B. (2008) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE phosphate mineralization from the newly discovered Trutzhofmühle aplite, Hagendorf Pegmatite Province, Germany. The Canadian Mineralogist, 46, 11311157.CrossRefGoogle Scholar
Dill, H.G., Weber, B. and Kaufhold, S. (2009) the origin of siderite-goethite-phosphate mineralization in the karst-related fault bound iron ore deposit Auerbach, Germany, a clue to the timing of hypogene and supergene Fe-Al phosphates in the NE Bavaria. Neues Jahrbuch fur Mineralogie-Abhandlungen, 186, 283307.CrossRefGoogle Scholar
Ekström, T.K. (1973) Synthetic and natural chlorinebearing apatite. Contributions to Mineralogy and Petrology, 38, 329338.CrossRefGoogle Scholar
ENADIMSA (1982) Investigación de la concesión “Carlos”. Navasfrías (Salamanca). [Unpublished geological report].Google Scholar
Falster, A., Simmons, W. and Moore, P. (1988) Fillowite, lithiophilite, heterosite/purpurite, and alluaudite-varuelite group minerals from a pegmatite in Florence County, Wisconsin. Rocks and Minerals, 63, 455, [from abstract].Google Scholar
Fernández-Leyva, C. (2007) Estudio metalogenético del batolito de Jálama y su entorno. Unpublished PhD thesis. University Politéctnica de Madrid, Madrid, Spain.Google Scholar
Fontan, F. and Roda-Robles, E. (1996) Descripción de la macla de la frondelita-rockbridgeita, asociada a las pegmatitas del Macizo de L’Arize, Pirineos (Ariege). Geogaceta, 20, 15241526.Google Scholar
Fransolet, A.M. (1975) Etude minéralogique et pétrologique des phosphates de pegmatites granitiques. Unpublished PhD thesis, University of Liège, Liège, Belgium.Google Scholar
Fransolet, A.M. (1980) The eosphorite-childrenite series associated with the Li-Mn-Fe phosphate minerals from the Buranga pegmatite, Rwanda. Mineralogical Magazine, 43, 10151023.CrossRefGoogle Scholar
Fransolet, A.M. (2007) Phosphate associations in the granitic pegmatites: the relevant significance of these accessory minerals. Pp. 78. in: Granitic Pegmatites: The State of the Art. Book of Abstracts, volume 8 (Martins, T. and Vieira, R., editors). Department of Geology, University of Porto, Porto, Portugal.Google Scholar
Fransolet, A.M., Keller, P. and Fontan, F. (1986) The phosphate mineral associations of the Tsaobismund pegmatite, Namibia. Contributions to Mineralogy and Petrology, 92, 502517.CrossRefGoogle Scholar
Fransolet, A.M., Hatert, F. and Fontan, F. (2004) Petrographic evidence for primary hagendorfite in an unusual assemblage of phosphate minerals, Kibingo granitic pegmatite, Rwanda. The Canadian Mineralogist, 42, 697704.CrossRefGoogle Scholar
Gloaguen, E. (2006) Apports d’une étude intégrée sur les relations entre granites et minéralisations filoniennes (Au et Sn-W) en contexte tardi orogénique. (Chaîne Hercynienne, Galice central, Espagne). Unpublished PhD thesis, University of Orléans, Orléans, France.Google Scholar
Guastoni, A., Nestola, F., Mazzoleni, G. and Vignola, P. (2007) Mn-rich graftonite, ferrisicklerite, staněkite, and Mn-rich vivianite in a granitic pegmatite at Soe Valley, central Alps, Italy. Mineralogical Magazine, 71, 579585.CrossRefGoogle Scholar
Hatert, F. (2004) Etude cristallochimique et synthèse hydrothermale des alluaudites: contribution nouvelle au problem génétique des phosphates de fer et de manganèse dans les pegmatites granitiques et, partant, à celui de l’évolution de ces gisements. Mémoires de l’Academie Royale des Science de Belgique, Classe des Sciences, third series, 21, 96 pp.Google Scholar
Hatert, F., Fransolet, A.M. and Maresch, W.V. (2006) The stability of primary alluaudites in granitic pegmatites: an experimental investigation of the Na2(Mn2-2.)(PO4)3 system. Contributions to Mineralogy and Petrology, 152, 399419.CrossRefGoogle Scholar
Keller, P. (1991) The occurrence of Li-Fe-Mn phosphate minerals in granitic pegmatites of Namibia. Communications of the Geological Survey of Namibia, 7, 2134.Google Scholar
Keller, P. and von Knorring, O. (1989) Pegmatites at the Okatjimukuju farm, Karibib, Namibia. Part I: Phosphate mineral associations of Clementine II pegmatite. European Journal of Mineralogy, 1, 567593.CrossRefGoogle Scholar
Keller, P., Fransolet, A.-M. and Fontan, F. (1994) Triphylite–lithiophilite and triplita–zwieselite in granitic pegmatites: their textures and genetic relationships. Neues Jahrbuch für Mineralogie-Abhandlungen, 168, 127145.Google Scholar
Keller, P., Fontan, F., Velasco, F. and Melgarejo, J.C. (1997) Staněkite, Fe3+(Mn,Fe2+,Mg)(PO4)A O. new phosphate mineral in pegmatites at Karibib (Namibia) and French Pyrenees (France). European Journal of Mineralogy, 9, 475482.CrossRefGoogle Scholar
Lerouge, C. and Bouchot, V. (2005) Châtaigneraie-example of an orogenic tungsten district. Ore Geology Reviews, 27, 200201.CrossRefGoogle Scholar
Llorens, T. and Moro, M.C. (2007) Preliminary study of intragranitic pegmatites in the Sn-W-(Au) district of Navasfrías (SW of Salamanca, Spain). Pp. 5657. in: Granitic Pegmatites: The State of the Art. Book of Abstracts, volume 8 (Martins, T. and Vieira, R., editors). Department of Geology, University of Porto, Porto, Portugal.Google Scholar
Llorens, T. and Moro, M.C. (2008) Fosfatos de Al-Fe-Mn en las pegmatitas intragraníticas del distrito de Navasfrías (SO Salamanca). Macla, 9, 145146.Google Scholar
London, D. (1990) The berlinite substitution, AlP = 2Si, in alkali feldspars from differentiated peraluminous igneous rocks (granites, pegmatites, and rhyolites). Geological Society of America, Programs with Abstracts, 22, A346.Google Scholar
London, D. (1992a) Phosphorous in S-type magmas: The P2O5 content of feldspars from peraluminous granites, pegmatites and rhyolites. American Mineralogist, 77, 126145.Google Scholar
London, D. (1992b) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. The Canadian Mineralogist, 30, 499540.Google Scholar
London, D. and Burt, D.M. (1982) Chemical models for lithium aluminosilicate stabilities in pegmatites and granites. American Mineralogist, 67, 494509.Google Scholar
London, D., Morgan, G.B. and Hervig, R.L. (1989) Vapor-undersaturated experiments with Macusani glass + H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contributions to Mineralogy and Petrology, 102, 117.CrossRefGoogle Scholar
London, D., Černý, P., Loomis, J.L. and Pan, J.J. (1990) Phosphorous in alkali feldspars of rare-element granitic pegmatites. The Canadian Mineralogist, 28, 771786.Google Scholar
London, D., Wolf, M.B., Morgan, G.B., VI and Gallego Garrido, M. (1999) Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40, 215240.CrossRefGoogle Scholar
Lottermoser, M.G. and Lu, J. (1997) Petrogenesis of rare-element pegmatites in the Olary Block, South Australia, part 1. Mineralogy and chemical evolution. Mineralogy and Petrology, 59, 119.CrossRefGoogle Scholar
Malló, A., Fontan, F., Melgarejo, J.-C. and Mata, J.M. (1995) The Albera zoned pegmatite field, Eastern Pyrenees, France. Mineralogy and Petrology, 55, 103116.CrossRefGoogle Scholar
Martin, R.B. (1996) Ternary complexes of Al3+ and F-with a third ligand. Coordination Chemistry Reviews, 141, 2332.CrossRefGoogle Scholar
Martínez Catalán, J.R., Martínez Poyatos, D and Bea, F. (2004) Zona Centroibérica. Pp. 68133. in: Geología de Espan˜a (Vera, J.A., editor). SGE-IGME, Madrid, Spain.Google Scholar
Moore, P.B. (1971) Crystal chemistry of the alluaudite structure type: contribution to the paragenesis of pegmatite phosphate giant crystals. American Mineralogist, 56, 19551975.Google Scholar
Moore, P.B. (1973) Pegmatite phosphates: descriptive mineralogy and crystal chemistry. Mineralogical Record, 4, 103130.Google Scholar
Moore, P.B. (1982) Pegmatite minerals of P(V) and B(III). Pp. 267291. in: Short course in granitic pegmatites in science and industry (P. Černý , editor). Mineralogical Association of Canada Short Course Handbook, 8. Mineralogical Association of Canada, Québec, Canada.Google Scholar
Morgan, G.B., VI and London, D. (2005) Phosphorus distribution between potassic alkali feldspar and metaluminous haplogranite liquid at 200 MPa (H2O): the effect of undercooling on crystal-liquid systematic. Contributions to Mineralogy and Petrology, 150, 456471.CrossRefGoogle Scholar
Moro, M.C. and Llorens, T. (2008) Triplita-apatito– isokita en las venas de cuarzo intragraníticas con Sn-W de la Salmantina (Navasfrías, SO Salamanca). Macla, 9, 167168.Google Scholar
Moro, M.C., Villar, P., Fadón, O., Fernández, A. and Cembranos, M.L. (2000) Las mineralizaciones primarias de Au en el distrito de Navasfrías (SO de Salamanca). Geotemas, 1, 5155.Google Scholar
Nizamoff, J.W., Simmons, W.B. and Falster, A.U. (2004) Phosphate mineralogy and paragenesis of the Palermo #2 pegmatite, North Groton, New Hampshire. Geological Society of America Abstracts with Programs, 36, 115.Google Scholar
Noronha, F., Doria, A., Dubessy, J. and Charoy, B. (1992) Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita, 27, 7279.CrossRefGoogle Scholar
Petrík, I., Kubiš, M., Konečný , P., Broska, I. and Malachovský , P. (2011) Rare phosphates from the Surovec topaz-Li-mica microgranite, Gemeric Unit, western Carpathians, Slovak Republic: role of F/H2O of the melt. The Canadian Mineralogist, 49, 521540.CrossRefGoogle Scholar
Pichavant, M., Montel, J.-M. and Richard, L.R. (1992) Apatite solubility in peraluminous liquids: experimental data and an extension of the Harrison-Watson model. Geochimica et Cosmochimica Acta, 56, 38553861.CrossRefGoogle Scholar
Pieczka, A. (2007) Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland. The Canadian Mineralogist, 45, 901914.CrossRefGoogle Scholar
Pirard, C., Hatert, F. and Fransolet, A.-M. (2007) Alteration sequence of aluminium phosphates from Montebras Pegmatite, Massif Central, France. P. 74 in: Granitic Pegmatites: The State of the Art. Book of Abstracts, volume 8 (Martins, T. and Vieira, R., editors). Department of Geology, University of Porto, Porto, Portugal.Google Scholar
Plášil, J., Sejkora, J., Čejka, J., Škoda, S. and Goliáš, V. (2009) Supergene mineralization of the Medvědín uranium deposit, Krkonoše Mountains, Czech Republic. Journal of Geosciences, 54, 1556.Google Scholar
Polya, D.A., Foxford, K.A., Stuart, F., Boyce, A. and Fallick, A.E. (2000) Evolution and paragenetic context of low dD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochimica et Cosmochimica Acta, 64, 33573371.CrossRefGoogle Scholar
Puziewicz, J. and Johannes, W. (1988) Phase equilibria and composition of Fe-Mg-Al minerals and melts in water-saturated peraluminous granitic system. Contributions to Mineralogy and Petrology, 100, 156168.CrossRefGoogle Scholar
Ramírez, J.A. (1996) Estudio petrológico, geoquímico e isotópico del Batolito de Jálama (Norte de Extremadura). Unpublished PhD thesis, University of Granada, Granada, Spain. Ramírez, J.A. and Grundvig, S. (2000) Causes of geochemical diversity in peraluminous granitic plutons: the Jálama pluton, Central-Iberian Zone (Spain and Portugal). Lithos, 50, 171190.CrossRefGoogle Scholar
Ramírez, J.A. and Menéndez, L.G. (1999) A geochemical study of two peraluminous granites from southcentral Iberia: the Nisa-Albuquerque and Jálama batholiths. Mineralogical Magazine, 63, 85104.CrossRefGoogle Scholar
Reale, P., Scrosati, B., Delacourt, C., Wurm, C., Morcrette, M. and Masquelier, C. (2003) Synthesis and thermal behavior of crystalline hydrated iron (III) phosphates of interest as positive electrodes in Li batteries. Chemistry of Materials, 15, 20215058.CrossRefGoogle Scholar
Roda-Robles, E., Fontan, F., Pesquera, A. and Velasco, F. (1996) The phosphate mineral association of the granitic pegmatites of the Fregeneda area (Salamanca, Spain). Mineralogical Magazine, 60, 767778.CrossRefGoogle Scholar
Roda-Robles, E., Fontan, F., Pesquera, A. and Keller, P. (1998) The Fe-Mn phosphate associations from the Pinilla de Fermoselle pegmatite, Zamora, Spain: occurrence of kryzhanovskite and natrodufrénite. European Journal of Mineralogy, 10, 155167.CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Fontan, F. and Keller, P. (2004) Phosphate mineral associations in the Can˜ada pegmatite (Salamanca, Spain): paragenetic relationships, chemical compositions, and implications for pegmatite evolution. American Mineralogist, 89, 110125.CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P., Torres-Ruiz, J. and Fontan, F. (2005) Origin and internal evolution of the Li-F-Be-B-P-bearing Pinilla de Fermoselle pegmatite (Central Iberian Zone, Zamora, Spain). American Mineralogist, 90, 18871899.CrossRefGoogle Scholar
Roda-Robles, E., Vieira, R., Pesquera, A. and Lima, A. (2010) Chemical variations and significance of phosphates from the Fregeneda-Almendra pegmatite field, Central Iberian Zone (Spain and Portugal). Mineralogy and Petrology, 100, 2334.CrossRefGoogle Scholar
Ruiz, C., Fernández-Leyva, C. and Locutura, J. (2008) Geochemistry, geochronology and mineralisation potential of the granites in the Central Iberian Zone: the Jálama batholith. Chemie der Erde, 68, 413429.CrossRefGoogle Scholar
Sejkora, J., Škoda, R., Ondruš, P., Beran, P. and Süsser, C. (2006a) Mineralogy of phosphate accumulations in the Huber stock, Krásno ore district, Slavkovský les area, Czech Republic. Journal of the Czech Geological Society, 51, 103147.Google Scholar
Sejkora, J., Škoda, R. and Ondruš, P. (2006b) New naturally occurring mineral phases from the Krásno– Horní Slavkov area, western Bohemia, Czech Republic. Journal of the Czech Geological Society, 51, 159187.Google Scholar
Shygley, J.E. and Brown, G.E. Jr. (1985) Occurrence and alteration of phosphate minerals at the Stewart Pegmatite, Pala District, San Diego County, California. American Mineralogist, 70, 395408.Google Scholar
Tagirov, B. and Schott, J. (2001) Aluminum speciation in crustal fluids revisited. Geochimica et Cosmochimica Acta, 65, 39653992.CrossRefGoogle Scholar
Tagirov, B., Schott, J., Harrichourry, J.-C. and Salvi, S. (2002) Experimental study of aluminum speciation in fluoride-rich supercritical fluids. Geochimica et Cosmochimica Acta, 66, 20132024.CrossRefGoogle Scholar
Vignola, P., Diella, V., Oppizzi, P., Tiepolo, M. and Weiss, S. (2008) Phosphate assemblages from the Brissago granitic pegmatite, western Southern Alps, Switzerland. The Canadian Mineralogist, 46, 635650.CrossRefGoogle Scholar
Watson, E.B. and Capobianco, C.J. (1981) Phosphorous and the rare earth elements in felsic magmas: an assessment of the role of apatite. Geochimica et Cosmochimica Acta, 45, 23492358.CrossRefGoogle Scholar
Wolf, M.B. and London, D. (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58, 41274145.CrossRefGoogle Scholar