Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T22:46:29.209Z Has data issue: false hasContentIssue false

Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling – a case study from the Karkonosze pluton (SW Poland)

Published online by Cambridge University Press:  05 July 2018

E. Słaby*
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
J. Götze
Affiliation:
Institute of Mineralogy, TU Bergakademie Freiberg, Brennhausgasse 14, D-09596 Freiberg, Germany
*

Abstract

Feldspars from the Karkonosze pluton (SW Poland) display many features compatible with magma mixing. The mixing hypothesis has been tested using a geochemical mass balance law resulting in two possible paths of magma hybridization. Based on the results of the geochemical calculation, feldspar samples have been chosen along both mixing lines for cathodoluminescence (CL) investigation which was used as the main tool for the reconstruction of their crystallization path. Changes in the conditions of nucleation and crystallization of the feldspars as well as their movement within the magma chamber have been recognized due to different luminescence characteristics. These changes in the conditions of crystallization obtained by CL allow a precise determination of the genetic affinity of the samples to more mafic or more felsic environments.

The results of the present study proved CL to be a valuable tool for the study of crystal-growth morphologies in a dynamic, turbulent environment and also as a geochemical tool for the reconstruction of various petrogenetic mechanisms (e.g. magma hybridization). Accordingly, the combination of CL with geochemical modelling provides corresponding information about magma evolution in an open system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrowski, P., Kryza, R., Mazur, S. and Żaba, J. (1997) Kinematic data on major Variscan strike-slip faults and shearz ones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine, 133, 727739.CrossRefGoogle Scholar
Anderson, A.T. (1984) Probable relation between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. American Mineralogist, 69, 660676.Google Scholar
Anderson, A.T. Jr.and Eklund, O. (1994) Cellular plagioclase intergrowths as a result of crystal magma mixing in the Proterozoic and Aland rapakivi batholith, SW Finland. Contributions to Mineralogy and Petrology, 117, 124136.CrossRefGoogle Scholar
Barbarin, B. (1990) Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California. Journal of Geophysical Research, 95, 1774717756.CrossRefGoogle Scholar
Baxter, S. and Feely, M. (2002) Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76, 6374.CrossRefGoogle Scholar
Behr, H.J., Engel, W., Franke, W., Giese, P. and Weber, K. (1984) The Variscan belt in central Europe: main structures, geodynamic implications, open questions. Tectonophysics, 109, 1540.CrossRefGoogle Scholar
Borkowska, M. (1966) Petrography of Karkonosze granite. Geologia Sudetica, II, 7–119 (in Polish).Google Scholar
Bussy, F. (1990). The rapakivi texture of feldspars in a plutonic mixing environment: a dissolution-recrystallization procesš Geological Journal, 25, 319324.Google Scholar
Cloos, H. (1925) Einfü hrung in die tektonische Behandlung magmatischerEr scheinungen (Granittektonik). I Spez. Teil. Das Riesengebirge in Schlesien, 1194.Google Scholar
Cox, R.A., Dempster, T.J., Bell, B.R. and Rogers, G. (1996) Crystallization of the Shap granite: evidence from zoned K-feldspar megacrysts. Journal of the Geological Society, 153, 625635.CrossRefGoogle Scholar
Didier, J. (1973) Granites and their Enclaves: The Bearing of Enclaves on the Origin of Granites. Developments in Petrology, 3. Elsevier, Amsterdam, 393 pp.Google Scholar
Diot, H., Mazur, S. and Couturie, J.P. (1994) Magmatic structures in the Karkonosze granite and their relation to tectonic structures in the eastern metamorphic cover. Igneous Activity and Metamorphic Evolution of the Sudetes Area, Wrocław. Abstracts, pp. 3639.Google Scholar
Diot, H., Mazur, S. and Pin, C. (1995) Karkonosze batholith (NE Bohemian Massif): The evidence for pluton emplacement during transtensional-extensional collapse. Journal of the Czech Geological Society, 40, 62.Google Scholar
Duthou, J.L., Couturie, J.P., Mierzejewski, M.P. and Pin, C. (1991) Rb/Sr age of the Karkonosze granite on the base of the whole rock method. Przegląd Geologiczny, 2, 7579 (in Polish).Google Scholar
Franke, W., Żelaźniewicz, A., Porębski, S.J. and Wajsprych, B. (1993) Saxothuringian zone in Germany and Poland: differences and common features. Geologische Rundschau, 82, 583599.CrossRefGoogle Scholar
Ginibre, C., Wörner, G. and Kronz, A. (2002) Minorand trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contributions to Mineralogy and Petrology, 143, 300315.CrossRefGoogle Scholar
Götze, J., Krbetschek, M.R., Habermann, D. and Wolf, D. (2000) High-resolution cathodoluminescence of feldsparminer als. Pp. 245270 in: Cathodoluminescence in Geosciences (Pagel, M., Barbin, V., Blanc, Ph. and Ohnenstetter, D., editors). Springer- Verlag, Berlin, Heidelberg, New York, Tokyo.CrossRefGoogle Scholar
Grogan, S.E. and Reavy, R.J. (2002) Disequilibrium textures in the Leinster Granite Complex, SE Ireland: evidence foracid- acid magma mixing. Mineralogical Magazine, 66, 929939.CrossRefGoogle Scholar
Hibbard, M.J. (1981) The magma mixing origin of mantled feldspar. Contributions to Mineralogy and Petrology, 76, 158170.CrossRefGoogle Scholar
Hibbard, M.J. (1994) Mixed magma rocks. Pp. 242–260 in: Petrography to Petrogenesis, pp. 242260. Prentice-Hall, New Jersey, USA.Google Scholar
Huppert, H.E. and Sparks, R.S.J. (1988) The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29, 599624.CrossRefGoogle Scholar
Kempe, U. and Götze, J. (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66, 135156.CrossRefGoogle Scholar
Kennan, P.S., Dziedzic, H., Lorenc, M.W. and Mierzejewski, M.P. (1999) A review of Rb-Sr isotope patterns in the Carboniferous granitoids of the Sudetes in SW Poland. Geologia Sudetica, 32, 4953.Google Scholar
Klominsky, J. (1969) Krkonossko-jizersky granitoid massif. Sbornik GeologickichVed, Geologie, 15, 7132 (in Czech).Google Scholar
Klötzli, U.S., Koller, F., Scharbert, S. and Höck, V. (2001) Cadomian lower-crustal contributions to Variscan granite petrogenesis (South Bohemian Pluton, Austria). Constraints from zircon topology and geochronology, whole rock, and feldspar Pb-Sr isotope systematics. Journal of Petrology, 42, 16211642.Google Scholar
Kossmat, F. (1927) Gliederung des varistischen Gebirgsbaues. Abhandlungen Sächsischen Geologischen Landesamts, 1, 139.Google Scholar
Leichmann, J., Broska, I. and Zachovalova, K. (2003) Low-grade alteration of feldspar minerals: a CL study. Terra Nova, 15, 104108.CrossRefGoogle Scholar
Long, P.E. and Luth, W.C. (1986) Origin of K-feldspar megacrysts in granitic rocks: Implication of a partitioning model for barium. American Mineralogist, 71, 367375.Google Scholar
Martin, H. (2002) Geochemical tools for modelling petrogenetic mechanisms. Socrates-Erasmus Course, Warsaw, pp. 180 (unpublished).Google ScholarPubMed
Matte, P. (1991) Accretionary history and crustal evolution of the Variscan Belt in Western Europe. Tectonophysics, 196, 309337.CrossRefGoogle Scholar
Matte, P., Maluski, H., Rajlich, P. and Franke, W. (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscan shearing. Tectonophysics, 177, 151170.CrossRefGoogle Scholar
Mazur, S. (1995) Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Ridge. Geologia Sudetica, 29, 3198.Google Scholar
Mierzejewski, M.P. (2002) Additional data and remarks to Hans Cloos's work in Karkonosze Mts (Riesengebirge). Zeitschrift fur Geologischen Wissenschaften, 30, 3748.Google Scholar
Mora, C.I. and Ramseyer, K. (1992) Cathodoluminescence of coexisting plagioclases, Boehls Butte anorthosite: CL activators and fluid flow paths. American Mineralogist, 77, 12581265.Google Scholar
Müller, A. and Seltmann, R. (2002) Plagioclase-mantled K-feldspar in the Carboniferous porphyritic microgranite of Altenberg-Frauenstein, eastern Erzgebirge/Krusne Hory. Bulletin of the Geological Society of Finland, 74, 5378.CrossRefGoogle Scholar
Müller, A., Seltmann, R. and Behr, H.-J. (2000) Application of cathodoluminescence to magmatic quartz in a tin granite – case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita, 35, 169189.Google Scholar
Müller, A., Kronz, A. and Breiter, K. (2002) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesí Granite System (Krusne Hory, Czech Republic). Bulletin of the Czech Geological Survey, 77/2, 135145.Google Scholar
Patočka, F., Fajst, M. and Kachlik, V. (2000) Maficfelsic to mafic-ultramafic Early Palaeozoic magmatism of the West Sudetes (NE Bohemian Massif): the South Krkonose complex. Zeitschrift Geologischen Wissenschaften, 28, 177210.Google Scholar
Pin, C., Mierzejewski, M.P. and Duthou, J.L. (1987) Isochronous age Rb/Sr of Karkonosze granite from the quarry Szklarska Porêba Huta and significance of initial ratio 87Sr/86Srin this granite. Przegląd Geologiczny, 35, 512516.Google Scholar
Pin, C., Mierzejewski, M.P., Duthou, J.L. and Couturie, J.P. (1988) Etude isotopique Rb-Srdu granite du Karkonosze. Pp. 4347 in: Petrologie et geologie du socle Varisque des Sudetes Polonaises: resultants de la co-operation entre les Universites de Wroclaw et Clermont-Ferrand (Lorenc, S. and Majerowicz, A. editors). Universite de Wrocław.Google Scholar
Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London, 352 pp.Google Scholar
Singer, B.S., Dungan, M.A. and Layne, G.D. (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calk-alkaline magma chambers. American Mineralogist, 80, 776798.CrossRefGoogle Scholar
Słaby, E. (2002) Porphyritic granite facies – Szklarska Pore?ba Huta. Mineralogical Society of Poland Special Papers, 20, 245247.Google Scholar
Słaby, E. and źGalbarczyk-Gąsiorowska, L. (2002) Barium in alkali feldspar megacrysts from Szklarska Pore?ba Huta porphyritic granite – possible indicatorof magma mixing. Mineralogical Society of Poland Special Papers, 20, 198201.Google Scholar
Słaby, E., Galbarczyk-Gąsiorowska, L. and Baszkiewicz, A. (2002) Mantled alkali-feldspar megacrysts from the marginal part of the Karkonosze granitoid massif (SW Poland). Acta Geologica Polonica, 52, 501519.Google Scholar
Słaby, E., Wilamowski, A. and Gunia, P. (2003) Disimilare barium and rubidium behavior in Karkonosze porphyritic granite facies – mixing or fractional crystallization. Mineralogical Society of Poland Special Papers, 22, 207211.Google Scholar
Tepley, F.J., III, Davidson, J.P., Tilling, R.I. and Arth, J.G. (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico. Journal of Petrology, 41, 13971411.CrossRefGoogle Scholar
Van den Kerkhof, A.M., Scherer, T. and Riganti, A. (1996) Cathodoluminescence and EPR analysis of Archean quarzites from the Nondweni Greenstone Belt, South Africa. SLMS International Conference on Cathodoluminescence, Nancy, abstracts p. 75.Google Scholar
Vance, J.A. (1965) Zoning in igneous plagioclase: patchy zoning. Journal of Geology, 73, 636651.CrossRefGoogle Scholar
Vance, J.A. (1969) On synneusis. Contributions to Mineralogy and Petrology, 24, 729.CrossRefGoogle Scholar
Vernon, R.H. (1983) Restite, xenoliths and microgranitoid enclaves in granites. Journal of the Proceedings of the Royal Society of New South Wales, 116, 77103.Google Scholar
Vernon, R.H. (1986) K-feldspar megacrysts in granites – Phenocrysts, not porphyroblasts. EarthScience Reviews, 23, 163.Google Scholar
Vernon, R.H. (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. Journal of Geophysical Research, 95, 1784917859.CrossRefGoogle Scholar
Vernon, R.H. (1991) Interpretation of microstructures of microgranitoid enclaves. Pp. 277291 in: Enclaves and Granite Petrology (Didier, J. and Barbarin, B., editors). Developments in Petrology, 13. Elsevier, Amsterdam.Google Scholar
Waight, T.E., Maas, R. and Nicholls, I.A. (2000) Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy: implications for crystal transfer and magma mingling in S-type granites. Contributions to Mineralogy and Petrology, 139, 227239.CrossRefGoogle Scholar
Wark, D.A. and Stimac, J.A. (1992) Origin of mantled (rapakivi) feldspars: experimental evidence of a dissolution- and diffusion-controlled mechanism. Contributions to Mineralogy and Petrology, 111, 345361.CrossRefGoogle Scholar
Wilamowski, A. (1998) Geotectonic environment of the Karkonosze and Tatra granite intrusions based on geochemical data. Archiwum Mineralogiczne, LI, 261271 (in Polish).Google Scholar