Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T11:14:53.373Z Has data issue: false hasContentIssue false

Fassinaite, Pb22+(S2O3)(CO3), the first mineral with coexisting thiosulphate and carbonate groups:d escription and crystal structure

Published online by Cambridge University Press:  05 July 2018

L. Bindi*
Affiliation:
Museo di Storia Naturale, Sezione Mineralogia e Litologia, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy CNR – Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy
F. Nestola
Affiliation:
Dipartimentodi Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, I-35131 Padova, Italy
U. Kolitsch
Affiliation:
Naturhistorisches Museum, Mineralogisch-Petrographische Abt., Burgring 7, A-1010 Wien, Austria Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
A. Guastoni
Affiliation:
Museodi Mineralogia, Università degli Studi di Padova, Palazzo Cavalli, Via Matteotti 30, I-35121, Padova, Italy
F. Zorzi
Affiliation:
Dipartimentodi Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, I-35131 Padova, Italy
*

Abstract

Fassinaite, ideally Pb22+(S2O3)(CO3), is a new mineral from the Trentini mine, Mount Naro, Vicenza Province, Veneto, Italy (holotype locality). It is also reported from the Erasmus adit, Schwarzleo District, Leogang, Salzburg, Austria and the Friedrich-Christian mine, Schapbach, Black Forest, Baden-Wurttemberg, Germany (cotype localities). At the Italian type locality it occurs as acicular [010]. colourless crystals up to 200 μn long, closely associated with galena, quartz and anglesite. At the Austrian cotype locality it is associated with cerussite, rare sulphur and very rare phosgenite. At the German cotype locality anglesite is the only associated phase. Fassinaite crystals commonly have flat chisel-shaped terminations. They are transparent with vitreous to adamantine lustre and a white streak. Fassinaite is brittle with an irregular fracture and no discernible cleavage; the estimated Mohs hardness is 11/2—2. The calculated density for the type material is 6.084 g cm–3 (on the basis of the empirical formula), whereas the X-ray density is 5.947 g cm–3. In common with other natural lead thiosulphates (i.e. sidpietersite and steverustite) fassinaite has intense internal reflections, which do not allow satisfactory optical data to be collected; the crystals are length-slow and have very high birefringence. The mineral is not fluorescent.

Fassinaite is orthorhombic, space group Pnma, with unit-cell parameters (for the holotype material) a = 16.320(2), b = 8.7616(6), c = 4.5809(7) Å, V = 655.0(1) Å3, a:b:c = 1.863:1:0.523, Z = 4. Single-crystal structural studies were carried out on crystals from all three localities: R1(F) values range between 0.0353 and 0.0596. The structure consists of rod-like arrangements of Pb-centred polyhedra that extend along the [010] direction. These ‘rods’ are linked, alternately, by (CO3)2– and (S2O3)2– groups. The (S2O3)2– groups point alternately left and right (in a projection on [001] with [010] set vertical) if the apex occupied by the S2– in the thiosulphate group is defined to be the atom giving the direction. The lead atoms are nine-coordinated by seven oxygen atoms and two sulphur (S2–) atoms. The eight strongest X-ray powder-diffraction lines [d in Å (I/I0) (hkl)] are: 4.410 (39) (101), 4.381 (59) (020), 4.080 (62) (400), 3.504 (75) (301), 3.108 (100) (121), 2.986 (82) (420), 2.952 (49) (221) and 2.736 (60) (321). Electron-microprobe analyses produce an empirical formula Pb2.01(1)(S1.82(2)O3)CO3 (on the basis of six oxygen atoms). The presence of both carbonate and thiosulphate groups was corroborated by Raman spectra, which are discussed in detail. Fassinaite is named after Bruno Fassina (b. 1943), an Italian mineral collector who discovered the mineral in 2009.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bindi, L., Bonazzi, P., Dei, L. and Zoppi, A. (2005) Does the bazhenovite structure really contain a thiosulphate group? A structural and spectroscopic study of a sample from the type-locality. American Mineralogist, 90, 1556-1562.CrossRefGoogle Scholar
Braithwaite, R.S.W., Kampf, A.R., Pritchard, R.G. and Lamb, R.P.H. (1993) The occurrence of thiosulfates and other unstable sulfur species as natural weathering products of old smelting slags. Mineralogy and Petrology, 47, 255-261.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 197-.Google Scholar
Chesnokov, B.V., Polyakov, V.O. and Bushmakin, A.F. (1987) Bazhenovite CaS5·CaS2O3·6Ca(OH)2·20H2O – a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 116, 737-743.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1999) The structure topology of sidpietersite, Pb2+ 4 (S6+O3S2–)O2(OH)2, a novel thiosulfate structure. The Canadian Mineralogist, 37, 1275-1282.Google Scholar
Cooper, M.A., Hawthorne, F.C. and Moffatt, E. (2009) Steverustite, Pb+ 5 (OH)5[Cu+(S6+O3S2–)3](H2O)2, a new thiosulphate mineral from the Frongoch Mine Dump, Devils Bridge, Ceredigion, Wales: description and crystal structure. Mineralogical Magazine, 73, 235-250.CrossRefGoogle Scholar
Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association, Ko be, Japan, abstract O03–13.Google Scholar
Gabelica, Z. (1979) Compounds containing cadmium and thiosulfate ions. X. Infrared and Raman investigation of the structural behavior of the S2O3 2– ion in cadmium thiosulfate dihydrate, CdS2O3.2H2O. Chemistry Letters, 1979, 1419-1422.CrossRefGoogle Scholar
Gabelica, Z. (1980) Structural study of solid inorganic thiosulfates by infrared and Raman spectroscopy. Journal of Molecular Structure, 60, 131-138.CrossRefGoogle Scholar
Griffith, W.P. (1970) Raman studies on rock-forming minerals. Part II. Minerals containing MO3, MO4, and MO6 groups. Journal of the Chemical Society A, 1970, 286-291.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, vol. IV, Kynoch Press, Birmingham, UK, 366 pp.Google Scholar
Kampf, A.R. (2009) The crystal structure of Ba2F2(S6+O3S2–), a natural thiosulphate weathering product of old smelting slags at the Surrender Mill, Yorkshire, UK. Mineralogical Magazine, 73, 251-255.CrossRefGoogle Scholar
Kolitsch, U. (2010) Pb2(S2O3)(CO3): the first naturally occurring thiosulphate carbonate and its atomic arrangement. Abstract IMA Meeting, Budapest, August 2010. Acta Mineralogica-Petrographica, Abstract Series, 6, 489.Google Scholar
Kucha, H. (1988) Biogenic and non-biogenic concentration of sulfur and metals in the carbonate-hosted Ballinalack Zn-Pb deposit, Ireland. Mineralogy and Petrology, 38, 171-178.CrossRefGoogle Scholar
Kucha, H. and Stumpfl, E.F. (1992) Thiosulphates as precursors of banded sphalerite and pyrite at Bleiberg, Austria. Mineralogical Magazine, 56, 165-172.CrossRefGoogle Scholar
Kucha, H., Wouters, R. and Arkens, O. (1989) Determination of sulfur and iron valence by microprobe. Scanning Microscopy, 3, 89-97.Google Scholar
Kucha, H., Prohaska, W. and Stumpfl, E.F. (1995a) Deposition and transport of gold by thiosulphates, Veitsch, Austria. Mineralogical Magazine, 59, 253-258.CrossRefGoogle Scholar
Kucha, H., Osuch, W. and Elsen, J. (1995b) Calculation and refinement of cell parameters of viaeneite from electron diffraction patterns. Neues Jahrbuch für Mineralogie Monatshefte, 1995, 433-443.Google Scholar
Kucha, H., Osuch, W. and Elsen, J. (1996) Viaeneite, (Fe,Pb)4S8O, a new mineral with mixed sulphur valencies from Engis, Belgium. European Journal of Mineralogy, 8, 93-102.CrossRefGoogle Scholar
Lengauer, C. (1987) Die Geologie des Bergbaugebiets von Leogang. Lapis, 12(9), 45-49 and 58, [in German].Google Scholar
Lippolt, H.J., Mertz, D.F. and Huck, K.-H. (1986) The genesis of the Clara and Friedrich-Christian vein deposits / Central Schwarzwald (FRG): Evidence from Rb-Sr, Sr87/Sr86, K-Ar, and Ar40/Ar39 investigations. Terra Cognita, 6, 228.Google Scholar
Maini, L., Carbonin, S., Secco, L., Boscardin, M. and Pegoraro, S. (2000) Minerali supergenici della zona di Schio-Recoaro (alpi vicentine). Rivista Mineralogica Italiana, 2, 114-117. [in Italian].Google Scholar
Markl, G. (1996) Wildschapbach: Mineralogie und Lagerstättenkunde des klassischen Schwarzwälder Bergbaureviers. Lapis, 21(11), 28-. [in German].Google Scholar
Meuwsen, A. and Heinze, G. (1952) Darstellung einiger Schwermetall-Trithionate. Zeitschrift für anorganische und allgemeine Chemie, 69, 86-91. [in German].CrossRefGoogle Scholar
Otwinowski, Z., Borek, D., Majewski, W. and Minor, W. (2003) Multiparametric scaling of diffraction intensities. Acta Crystallographica, A59, 234-.Google ScholarPubMed
Paar, W.H. (1987) Erze und Gangart – Mineralien von Leogang. Lapis, 12(9), 24- and 58, [in German].Google Scholar
Poeverlein, R. and Hochleitner, R. (1987) Die Sekundärmineralien von Leogang. Lapis, 12(9), 32- and 58, [in German].Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) PAP φ(ρZ) procedure for improved quantitative microanalysis. Pp. 104-106 in: Microbeam Analysis 1985 (Armstrong, J.T., editor). San Francisco Press, San Francisco, USA.Google Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Criddle, A.J., Stanley, C.J., Key, C.L. and Jambor, J.L. (1999) Sidpietersite, Pb2+ 4 (S6+O2S2–)O2(OH)2, a new thiosulfate-bearing mineral species from Tsumeb, Namibia. The Canadian Mineralogist, 37, 1269-1273.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 122-.Google Scholar
Stracher, G.B., Finkelman, R.B., Hower, J.C., Pone, J.D.N., Prakash, A., Blake, D.R., Schroeder, P.A., Emsbo-Mattingly, S.D. and O’Keefe, J.M.K. (2009) Natural and anthropogenic coal fires. In: Encyclopedia of Earth (Umran Dogan, A. and Cutler, J., editors). Environmental Information Coalition, National Council for Science and the Environment, Cleveland, Washington DC.Google Scholar
Walenta, K. (1992) Die Mineralien des Schwarzwaldes. Christian Weise Verlag, Munich, Germany, 336 pp., [in German].Google Scholar
Supplementary material: File

Bindi et al. supplementary material

Structure factors 1

Download Bindi et al. supplementary material(File)
File 17.3 KB
Supplementary material: File

Bindi et al. supplementary material

Strucure Factors 2

Download Bindi et al. supplementary material(File)
File 17.4 KB
Supplementary material: File

Bindi et al. supplementary material

Strucure Factors 3

Download Bindi et al. supplementary material(File)
File 51.7 KB
Supplementary material: File

Bindi et al. supplementary material

Structure factors 4

Download Bindi et al. supplementary material(File)
File 51.8 KB