Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T07:52:02.407Z Has data issue: false hasContentIssue false

Essential features of the polytypic charoite-96 structure compared to charoite-90

Published online by Cambridge University Press:  05 July 2018

I. V. Rozhdestvenskaya*
Affiliation:
Department of Crystallography, Geological Faculty, Saint Petersburg State University, University emb. 7/9, St Petersburg 199034, Russia Department of Crystallography, Institute of Geosciences, Christian-Albrechts-University, Olshausenstrasse 40, D-24098 Kiel, Germany
E. Mugnaioli
Affiliation:
Institute of Physical Chemistry, Johannes Gutenberg-University, Welderweg 11, D-55099 Mainz, Germany
M. Czank
Affiliation:
Department of Crystallography, Institute of Geosciences, Christian-Albrechts-University, Olshausenstrasse 40, D-24098 Kiel, Germany
W. Depmeier
Affiliation:
Department of Crystallography, Institute of Geosciences, Christian-Albrechts-University, Olshausenstrasse 40, D-24098 Kiel, Germany
U. Kolb
Affiliation:
Institute of Physical Chemistry, Johannes Gutenberg-University, Welderweg 11, D-55099 Mainz, Germany
S. Merlino
Affiliation:
Dipartimento di Scienze della Terra, University of Pisa, I-56126 Pisa, Italy
*

Abstract

Charoite, ideally (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4·nH20, is a rock-forming mineral from the Murun massif in Yakutia, Sakha Republic, Siberia, Russia, where it occurs in a unique alkaline intrusion. Charoite occurs as four different polytypes, which are commonly intergrown in nanocrystallme fibres. We report the structure of charoite-96 (a = 32.11(6), b = 19.77(4), c = 7.23(1) Å, β = 95.85(9)°, V = 4565(24) Å3, space group P21/m), which was solved ab initio by direct methods on the basis of 2676 unique electron diffraction reflections collected by automated diffraction tomography and refined to R1/wR2 = 0.34/0.37. The structure of charoite-96 is related to that of the charoite-90, which was also solved recently. Both structures are composed of three different types of dreier silicate chains running along [001] and separated by ribbons of edge-sharing Ca- and Na-centred octahedra. In the structure of charoite-96, adjacent blocks formed by three different silicate chains and stacked along the x axis, are shifted by a translation of 1/2 c. The shifts involve a hybrid dreier quadruple chain, [Si17O43]18– and a double dreier chain, [Si6O17]10–. In charoite-90 adjacent blocks are stacked without shifts.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselrud, L.G., Grin, Yu.N., Zavalii, P.Yu., Pecharsky, V.K. and Fundamensky, V.S. (1989) CSD – the programs for determination and refinement of crystal structures. Collected Abstracts of the XII European Crystallography Meeting, Moscow, 3, 155.Google Scholar
Bailey, S.W. (1977) Report of the I.M.A. – I.U.Cr. Joint Committee on Nomenclature. American Mineralogist, 62, 411-415.Google Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Diligi, S. and Spagna, R. (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40, 609-613.CrossRefGoogle Scholar
Chiragov, M.I. and Shirinova, A.F. (2004) Crystal structure of charoite; relations to structures of miserite, canasite and okenite. Mineralogicheskiy Zhurnal, 26, 5-9. [in Russian].Google Scholar
Czank, M. and Bissert, G. (1993) The crystal structure of Li2Mg2[Si4O11], a loop-branched dreier single chain silicate. Zeitschrift für Kristallographie, 204, 129-142.Google Scholar
Czank, M. and Liebau, F. (1980) Periodicity faults in chain silicates: a new type of planar lattice fault observed with high resolution electron microscopy. Physics and Chemistry of Minerals, 6, 85-93.CrossRefGoogle Scholar
Dornberger-Schiff, K. (1956) On order–disorder structures (OD-structures). Acta Crystallographica, 9, 593-601.CrossRefGoogle Scholar
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie der OD-Strukturen aus Schichten. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie,Geologie und Biologie, 3, 1-107.Google Scholar
Dornberger-Schiff, K. (1966) Lehrgang über OD Strukturen. Akademie Verlag, Berlin, 135 pp.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. Oxford University Press, Oxford, UK, 370 pp.Google Scholar
Hejny, C. and Armbruster, T. (2001) Polytypism in xonotlite Ca6Si6O17(OH)2 . Zeitschrift für Kristallographie, 216, 396-408.Google Scholar
Jefferson, D.A. and Bown, M.G. (1973) Polytypism and stacking disorder in wollastonite. Nature Physical Science, 245, 43-44.CrossRefGoogle Scholar
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. and Hubert, D. (2007) Towards automated diffraction tomography: part I – data acquisition. Ultramicroscopy, 107, 507-513.CrossRefGoogle ScholarPubMed
Kolb, U., Gorelik, T. and Otten, M.T. (2008) Towards automated diffraction tomography. Part II – cell parameter determination. Ultramicroscopy, 108, 763-772.CrossRefGoogle ScholarPubMed
Kudoh, Y. and Takeuchi, Y. (1979) Polytypism of xonotlite: (I) structure of an A1 polytype. Mineralogical Journal, 9, 349-373.CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Springer-Verlag, Berlin, 412 pp.CrossRefGoogle Scholar
Merlino, S. (1983) Okenite, Ca10Si18O46·18(H2O); the first example of a chain and sheet silicate. American Mineralogist, 68, 614-622.Google Scholar
Merlino, S. (1997) OD approach in minerals: examples and applications. Pp. 29-54 in: Modular Aspects of Minerals (Merlino, S., editor). EMU Notes in Mineralogy 1, Eötvös University Press, Budapest, 488 pp.Google Scholar
Mugnaioli, E., Gorelik, T. and Kolb, U. (2009) “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy, 109, 758.CrossRefGoogle ScholarPubMed
Mugnaioli, E., Gorelik, T., Stewart, A. and Kolb, U. (2011) “Ab-initio” structure solution of nanocrystalline minerals and synthetic materials by automated electron tomography. In: Minerals as Advanced Materials II (Krivovichev, S.V., editor). Springer-Verlag, Berlin, 427 pp.Google Scholar
Nikishova, L.V., Lazebnik, K.A. and Lazebnik, Yu.D. (1985) About crystallochemical formulae of charoite. Pp. 100-105 in: Crystal Chemistry and Structure of Minerals. Nauka, Leningrad, Russia, [in Russian].Google Scholar
Rozhdestvenskaya, I.V. and Nikishova, L.V. (2002) Crystallochemical characteristics of alkali calcium silicates from charoitites. Crystallography Reports, 47, 545-554.CrossRefGoogle Scholar
Rozhdestvenskaya, I.V., Kogure, T. and Drits, V.A. (2009) Structural model of charoite. Mineralogical Magazine, 73, 883-890.CrossRefGoogle Scholar
Rozhdestvenskaya, I.[V.], Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U., Reinholdt, A. and Weirich, T. (2010) The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)] (OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineralogical Magazine, 74, 159-177.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 122-.Google Scholar
Schömer, R., Heil, U., Schlitt, S. and Kolb, U. (2009) ADT-3D. A software package for ADT data visualizing and processing. Institute of Computer Science, Johannes Gutenberg University, Mainz, Germany.Google Scholar
Veblen, D.R. (1985) Direct TEM imaging of complex structures and defects in silicates. Annual Review of Earth and Planetary Sciences, 13, 119-146.CrossRefGoogle Scholar
Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271-282.CrossRefGoogle Scholar
Wenk, H.R., Muller, W.F., Liddell, N.A. and Phakey, P.P. (1976) Polytypism in wollastonite. Pp. 324-331 in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer-Verlag, Berlin, 564 pp.CrossRefGoogle Scholar