Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T06:55:27.207Z Has data issue: false hasContentIssue false

Early Palaeolithic bone diagenesis in the Arago cave at Tautavel, France

Published online by Cambridge University Press:  05 July 2018

L. Quattropani
Affiliation:
Laboratoire de Recherche des Musées de France, CNRS-UMR 171, 6 rue des Pyramides, F-75041 Paris Cedex 01, France
L. Charlet
Affiliation:
Groupe de Géochimie de l'Environnement, L.G.I.T., CNRS-UMR C5559, Université de Grenoble I (UJF), B.P. 53, F-38041 Grenoble Cedex 9, France
H. de Lumley
Affiliation:
Muséum National d'Histoire Naturelle, Institut de Paléontologie Humaine, 1 rue René Panhard, F-75013 Paris, France
M. Menu
Affiliation:
Laboratoire de Recherche des Musées de France, CNRS-UMR 171, 6 rue des Pyramides, F-75041 Paris Cedex 01, France

Abstract

Bones from level G in the Arago cave (Tautavel, Southern France, 450 ky) were analysed using a combination of particle induced X-ray and gamma-ray emission (PIXE and PIGME) and X-ray diffraction (XRD). Human occupation and guano production by bats introduced a large amount of phosphate into the cave and as a result a decarbonated pocket was formed in the sediment, characterized by the dissolution of clay minerals, calcite and bones, and by the precipitation of phosphate secondary minerals. The Al released by clay minerals was reprecipitated as crandallite in the few remaining bones, and as montgomeryite with traces of crandallite in the surrounding sediments. Bones within the pocket have very high levels of Al, Fe, F and Zn and often have ‘diffusive’ type U-shaped concentration profiles. These profiles show that post-mortem uptake of trace elements occurred, and thus that trace element composition has to be used with care in palaeonutritional studies but is indicative of local palaeoenvironment. This uptake is complicated by a large increase in hydroxylapatite crystallinity in Palaeolithic bones compared to modern or more recent ones, as a result of the large P influx which occurred in the Arago cave after the sediment deposition.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: Institut de Physique, Université de Fribourg, Pérolles, CH-1700 Fribourg, Switzerland

References

Badone, E. and Farquhar, R.M. (1982) Application of neutron activation analysis to the study of element concentration and exchange in fossil bones. J. Radioanalytical Chem., 69, 291311.CrossRefGoogle Scholar
Beiner, M. (1983) Etude des minéraux lourds de la Caune de l'Arago et de son environnement. Bull. de l'Assoc. fr. Quatern., 1, 1923.Google Scholar
Bocherens, H., Fizet, M., Mariotti, A., Gangloff, R.A. and Burns, J.A. (1994) Contribution of isotopic biogeochemistry (13C, 15N, 18O) to the paleoecology of mammoths. (Mammuthus Primigenius) Hist. Biol., 7, 187202.CrossRefGoogle Scholar
Boscher-Barreé, N., Trocellier, P., Deschamps, N., Dardenne, C., Blondiaux, J. and Buchet, L. (1992) Nuclear microprobe study of trace element in archaeological bones. J. Trace Microprobe Techn., 10, 7790.Google Scholar
Calligaro, T., MacArthur, J.D. and Salomon, J. (1996) An improved experimental setup for the simultaneous PIXE analysis of heavy and light elements with a 3 MeV proton external beam. Nucl. Instr. Methods Phys. Res. B, 109/110, 125–8.CrossRefGoogle Scholar
Christoffersen, M.R. and Christoffersen, J. (1985) The effect of aluminum on the rate of dissolution of calcium hydroxyapatite – a contribution to the understanding of aluminum-induced bone diseases. Calc. Tiss. Int., 37, 673–6.CrossRefGoogle ScholarPubMed
Coote, G.E. and Vickridge, I. (1988) Application of a nuclear microprobe to the study of calcified tissues. Nucl. Instr. Methods Phys. Res. B, 30, 393397.CrossRefGoogle Scholar
Elliott, T.A. and Grime, G.W. (1993) Examining the diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy. Nucl. Instr. Methods Phys. Res. B, 77, 537–47.CrossRefGoogle Scholar
Goldberg, P.S. and Nathan, Y. (1975) The phosphate mineralogy of el-Tabun cave, Mount Carmel, Israel. Mineral. Mag., 40, 253–8.CrossRefGoogle Scholar
Henderson, P., Marlow, C.A., Molleson, T.I. and Williams, C.T. (1983) Patterns of chemical change during bone fossilization. Nature, 306, 358–60.CrossRefGoogle Scholar
Iacumin, P., Cominotto, D. and Longinelli, A. (1996) A stable isotope study of mammal skeletal remains of mid-Pleistocene age, Arago Cave, Eastern Pyrenees, France. Evidence of taphonomic and diagenetic effects. Palaeogeog., Palaeoclimatol., Palaeoecol., 126, 151–60.CrossRefGoogle Scholar
Kyle, J.H. (1986) Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth – the implications forpalaeodietary research. J. Archaeol. Sci., 13, 403–16.CrossRefGoogle Scholar
Lambert, J.B., Simpson, S.V., Szpunar, C.B. and Buikstra, J.E. (1985) Bone diagenesis and dietary analysis. J. Human Evol., 14, 477–82.CrossRefGoogle Scholar
Lumley, H. de and Lumley, M.-A.de (1971) Découverte de restes humains anténéanderthaliens datés du Riss á la Caune de l‘Arago (Tautavel, Pyrénées-Orientales). C. R. Acad. Sci., Paris, D, 272, 1739–42.Google Scholar
Lumley, H. de, Fournier, A., Park, Y.C., Yokoyama, Y. and Demouy, A. (1984) Stratigraphie du remplissage Pléeistocène moyen de la Caune de l'Arago à Tautavel. Etude de huit carottages effectués de 1981 à 1983. L'Anthropologie (Paris), 88, 5–18.Google Scholar
Maxwell, J.A., Campbell, J.L. and Teesdale, W.J. (1988) The Guelph PIXE software. A description of the code package. Nucl. Instr. Methods Phys. Res. B, 43, 218–30.CrossRefGoogle Scholar
Menu, M., Calligaro, T., Salomon, J., Amsel, G. and Moulin, J. (1990) The dedicated accelerator-based IBA facility AGLAE at the Louvre. Nucl. Instr. Methods Phys. Res. B, 45, 610–4.CrossRefGoogle Scholar
Michel, V., Ildefonse, Ph. and Morin, G. (1996) Assessment of archaeological bone and dentine preservation from Lazaret cave (Middle Pleistocene ) in France. Palaeogeog., Palaeoclimatol., Palaeoecol., 126, 109–19.CrossRefGoogle Scholar
Millard, A.R. and Hedges, R.E.M.(1995) The role of the environment in uranium uptake by buried bone. J. Archaeol. Sci., 22, 239–50.CrossRefGoogle Scholar
Moore, P.B. and Araki, T. (1974) Montgomeryite, Ca4Mg(H2O)12[Al4(OH)4(PO4)6]; its crystal structure and relation to vauxite, Fe2 2+(H2O)4[Al4(OH)4-(H2O)4(PO4)4]4H2O). Amer. Mineral., 59, 843–50.Google Scholar
Mosser, C., Miskovsky, J.-C., Chevallier-Renaud, M.-C. and Larque, P. (1992) L'histoire et l'origine de sédiments préhistoriques décrites par les éléments traces des argiles. Exemple du remplissage de la Caune de l'Arago (Tautavel, Pyrénées-Orientales, France). Mém. Soc. géol. Fr., 160, 45–54.Google Scholar
Nriagu, J.O. (1976) Phosphate-clay mineral relations in soils and sediments. Canad. J. Earth Sci., 13(6), 719–36.Google Scholar
Parker, R.B. and Toots, H. (1980) Trace elements in bones as paleobiological indicators. In Fossils in the Making, (Behrensmeyer, A.K. and Hill, A.P., eds). The University of Chicago Press, Chicago, pp. 197207.Google Scholar
Pate, F.D. and Hutton, J.T. (1988) The use of soil chemistry data to address post-mortem diagenesis in bone mineral. J. Archaeol. Sci., 15, 729–39.CrossRefGoogle Scholar
Perrenoud, C. (in press) La phosphatogenèse de la Caune de l'Arago (Tautavel, France): approche micromorphologique. In Proc. 13th U.I.S.P.P. Congress, Forli (1996).Google Scholar
Person, A., Bocherens, H., Saliège, J.-F., Paris, F., Zeitoun, V. and Gérard, M. (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractome- try analysis. J. Archaeol. Sci., 22, 211–21.CrossRefGoogle Scholar
Pois, V. (1997) Apport de l'informatique à l'étude d'un gisement karstique. Exemple de la Caune de l'Arago á Tautavel (Pyrénées Orientales, France). Quaternaire, 8, 143–7.CrossRefGoogle Scholar
Price, T.D., Schoeninger, M.J. and Armelagos, G.J. (1985) Bone chemistry and past behaviour: an overview. J. Human Evol., 14, 419–47.CrossRefGoogle Scholar
Price, T.D., Blitz, J., Burton, J. and Ezzo, J.A. (1992) Diagenesis in prehistoric bone: problems and solutions. J. Archaeol. Sci., 19, 513–29.CrossRefGoogle Scholar
Runia, L.T. (1987) The chemical analysis of prehistoric bones; a paleodietary and ecoarcheological study of bronze age West-Friesland. BAR International Series 363, 234 pp.Google Scholar
Schwab, R.G., Herold, H., Costa, M.L. da and Oliveira, N.P. de (1989) The formation of aluminous phosphates through lateritic weathering of rocks. In Weathering; its products and deposits, Vol. 2 (Balasubramaniam, K.S. et al., eds). Theophrastus Publications, Athens, pp. 369–86.Google Scholar
Simkiss, K. and Wilbur, K.M. (1989) Biomineralization: cell biology and mineral deposition. Academic Press Inc., San Diego. 337 pp.Google Scholar
Vieillard, P. (1978) Géochimie des phosphates. Etude thermodynamique. Application à la genése et à l'altération des apatites. PhD thesis, Univ. Toulouse, Sciences géologiques, mémoire n° 51, Université Louis Pasteur, Strasbourg, 185 pp.Google Scholar
Vieillard, P., Tardy, Y. and Nahon, D. (1979) Stability fields of clays and aluminium phosphates: paragenesis in lateritic weathering of argillaceous phosphatic sediments. Amer. Mineral., 64, 626–34.Google Scholar
Williams, C.T. (1988) Alteration of chemical composition of fossil bones by soil processes and ground-water. In Trace Elements in Environmental History, (Grupe, G. and Herrmann, B., eds). Springer Verlag, Berlin, 2740.CrossRefGoogle Scholar