Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T03:40:45.710Z Has data issue: false hasContentIssue false

Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units

Published online by Cambridge University Press:  05 July 2018

J. P. Cuif*
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
Y. Dauphin
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
B. Farre
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
G. Nehrke
Affiliation:
AWI-Polar Research Institute, Postfach 120161, Bremerhaven, D- 27515, Germany
J. Nouet
Affiliation:
UMR 8148 IDES, Bat. 504 Géologie, Faculté des Sciences, Orsay, F-91405, France
M. Salomé
Affiliation:
ESRF, 6 rue J. Horowitz, BP 220, Grenoble Cedex 9, F-38043, France
*

Abstract

Synchrotron-based XANES characterization of sulphated sulphur combined with atomic force microscopy and transmission electron microscopy (imaging and diffraction) allow insights into the crystallization of the calcareous units produced by invertebrates. As a result of a series of converging data, reticulate crystallization of the amorphous Ca-carbonate molecules conveyed to the micron-thick growth layer by the sumicrometric organo-mineral units seems a reasonable hypothesis, providing us with a method of explaining the multiple and taxonomy-linked ‘vital effects’ which have long been recognized among the calcareous biocrystals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addadi, L., Moradian, J., Shai, E., Maroudas, N. and Weiner, S. (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation. Relevance to biomineralization. Proceedings of the National Academy of Science U.S.A., 84, 2732–2736.CrossRefGoogle ScholarPubMed
Adkins, J.F., Boyle, E.A., Cutty, W.B. and Lutringer, A. (2003) Stable isotopes in deep-sea corals and a new mechanisms for “vital effects”. Geochimica et Cosmochimica Ada, 67/6, 1137–1143.CrossRefGoogle Scholar
Baronnet, A., Cuif, J.P., Dauphin, Y., Farre, B. and Nouet, J. (2008) Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcitic prisms of the Pelecypod Pinctada margaritifer. (Mollusca) at the sub-micrometre to nanometre ranges. Mineralogical Magazine, (in press).CrossRefGoogle Scholar
Crenshaw, M. (1980) Mechanisms of shell formation and dissolution. Pp. 115–132 in: Skeletal Growth of Aquatic Organism. (Rhoads, D.C. and Lutz, R.A., editors) Plenum press.Google Scholar
Cuif, J.P., Dauphin, Y., Doucet, J., Salome, M. and Susini, J. (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochimica et Cosmochimica Ada, 67, 75–83.CrossRefGoogle Scholar
Cuif, J.P., Dauphin, Y., Meibom, A. and Guzman, N. (2005) Structural and biochemical patterns at the micro and nanoscales in mollusc prisms and coral fibres. Pp. 215–224 in: Biomineralization from Paleontology to Material Scienc. (Arias, J.L. and Fernandez, M.S., editors). Proceedings of the 9th Biomineralization Symposium, Pucon, Chile. Editorial Universitaria, Santiago.Google Scholar
Dauphin, Y., Cuif, J.P., Doucet, J., Salomé, M., Susini, J. and Williams, C.T. (2003) In situ chemical speciation of sulfür in calcitic biominerals and the simple prism concept. Journal of Structura. Biology, 142, 272–280.Google Scholar
Dauphin, Y., Ball, A.D., Cotte, M., Cuif, J.P., Meibom, A., Salome, M., Susini, J. and Williams, C.T. (2008) Structure and composition of the nacre—prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Analytical and Bioanalytical Chemistry, 309, 1659–1669.Google Scholar
Goreau, T. (1956) Histochemistry of mucopolysacchar-ide-like substances and alkaline phosphatase in Madreporaria. Nature, 4518, 1029–1030.Google Scholar
Guzman, N., Ball, A.D., Cuif, J.P., Dauphin, Y., Denis, A. and Ortlieb, L. (2007) Subdaily growth patterns and organo-mineral nanostructure of the growth layers in the calcitic prisms of the shell of concholepas concholepa. Bruguiere, 1789 (Gastropoda, Muricidae). Microscopy and Microanalysis, 13, 397–405.CrossRefGoogle Scholar
Marsh, E., Ridalla, A.L., Azadib, P. and Dukea, PJ. (2002) Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite. Journal of Structural Biology, 139, 39–45.CrossRefGoogle ScholarPubMed
Volkmer, D. (2007) Biologically inspired crystallization of calcium carbonate beneath monolayers: a critical overview. Pp. 65–87 in: Handbook of Biomineralization: Biomimetic and Bioinspired Chemistr. (Behrens, P. and Baeuerlein, E., editors). Wiley.Google Scholar
Wainwright, S.A. (1963) Skeletal organization in the coral Podllopora damicornis. Quarterly Journal of Microscopical Science, 104, 169–183.Google Scholar
Weiner, S., Traub, W. and Parker, S.B. (1984) Macromolecules in mollusc shells and their functions in biomineralization. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, Mineral Phases in Biology, 425–43.Google Scholar