Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:00:01.289Z Has data issue: false hasContentIssue false

Dissolution kinetics of hydrated calcium aluminates (AFm-Cl) as a function of pH and at room temperature

Published online by Cambridge University Press:  02 January 2018

Nicolas C. M. Marty*
Affiliation:
BRGM, 45060 Orléans Cedex 2, France
Sylvain Grangeon
Affiliation:
BRGM, 45060 Orléans Cedex 2, France
Catherine Lerouge
Affiliation:
BRGM, 45060 Orléans Cedex 2, France
Fabienne Warmont
Affiliation:
ICMN – CNRS - Université d’Orléans, 1b rue de la Férollerie, 45071 Orléans Cedex 2, France
Olivier Rozenbaum
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), UMR 6113, 1A, rue de la Férollerie, 45071 Orléans Cedex 2, France
Thibauld Conte
Affiliation:
BRGM, 45060 Orléans Cedex 2, France
Francis Claret
Affiliation:
BRGM, 45060 Orléans Cedex 2, France
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The determination of reliable weathering/dissolution rates for cement phases is of fundamental importance for the modelling of the temporal evolution of both radioactive waste repositories and CO2 geological storage sites (e.g. waste matrix, plug in boreholes). Here, the dissolution kinetics of AFm-Cl (hydrated calcium aluminates containing interlayer Cl) has been studied using flow-through experiments conducted at pH values ranging from 9.2 to 13. Mineralogical (XRD) and chemical (EPMA, TEM) analyses have been performed to determine the evolution of the phases during the dissolution experiments. For pH values between 10 and 13, the dissolution of AFm-Cl is congruent (i.e. Ca/Al ratios close to 2 both for solids and outlet concentrations). In contrast, the precipitation of amorphous Al-phases and possibly amorphous mixed Al/Ca phases is observed at pH 9.2, leading to Ca/Al ratios in the outlet solutions higher than those of the initial solid. Therefore, at pH 9.2, even if Cl/OH exchange occurs, estimation of dissolution rate from released Cl appears to be the best proxy. Dissolution rates were normalized to the final specific surface areas (ranging from 6.1 to 35.4 m2 g−1). Dissolution rate appears to be pH-independent and therefore the far-from-equilibrium dissolution rate at room temperature is expressed as: logR(mol m–2 s–1) = –9.23 ± 0.18

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
© [2017] The Mineralogical Society of Great Britain and Ireland. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

References

Aimoz, L., Kulik, D.A., Wieland, E., Curti, E., Lothenbach, B. and Mäder, U. (2012a) Thermodynamics of AFm-(I2, SO4) solid solution and of its end-members in aqueous media. Applied Geochemistry, 27, 21172129.CrossRefGoogle Scholar
Aimoz, L., Wieland, E., Taviot-Gueho, C., Dahn, R., Vespa, M. and Churakov, S.V. (2012b) Structural insight into iodide uptake by AFm phases. Environmental Science & Technology, 46, 38743881.CrossRefGoogle ScholarPubMed
Aimoz, L., Wieland, E., Kulik, D.A., Lothenbach, B., Glaus, M.A. and Curti, E. (2013) Characterization and solubility determination of the solid-solution between AFm-I2 and AFm-SO4 . Pp. 5765 in: Cement-Based Materials for NuclearWaste Storage (Bart, F., Cau-di-Coumes, C., Frizon, F. and Lorente, S., editors). Springer New York, New York.CrossRefGoogle Scholar
Atkinson, A. and Nickerson, A.K. (1988) Diffusion and sorption of cesium, strontium, and iodine in water-saturated cement. Nuclear Technology, 81, 100113.CrossRefGoogle Scholar
Balonis, M. and Glasser, F.P. (2009) The density of cement phases. Cement and Concrete Research, 39, 733739.CrossRefGoogle Scholar
Baquerizo, L.G., Matschei, T., Scrivener, K.L., Saeidpour, M. and Wadsö, L. (2015) Hydration states of AFm cement phases. Cement and Concrete Research, 73, 143157.CrossRefGoogle Scholar
Baur, I. and Johnson, C.A. (2003) Sorption of selenite and selenate to cement minerals. Environmental Science & Technology, 37, 34423447.CrossRefGoogle ScholarPubMed
Bildstein, O. and Claret, F. (2015) Chapter 5 – Stability of clay barriers under chemical perturbations. Pp. 155188 in: Natural and Engineered Clay Barriers (Tournassat, C., Steefal, C., Bourg, I. and Bergaya, F., editors). Elsevier.CrossRefGoogle Scholar
Birnin-Yauri, U.A. and Glasser, F.P. (1998) Friedel's salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding. Cement and Concrete Research, 28, 17131723.CrossRefGoogle Scholar
Blanc, P., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A. and Gaucher, E.C. (2012) Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry, 27, 21072116.CrossRefGoogle Scholar
Bonhoure, I., Baur, I., Wieland, E., Johnson, C.A. and Scheidegger, A.M. (2006) Uptake of Se(IV/VI) oxyanions by hardened cement paste and cement minerals: An X-ray absorption spectroscopy study. Cement and Concrete Research, 36, 9198.CrossRefGoogle Scholar
Brunauer, S. ,Emmett, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Cama, J., Ayora, C. and Lasaga, A.C. (1999) The deviation-from-equilibrium effect on dissolution rate and on apparent variations in activation energy. Geochimica et Cosmochimica Acta, 63, 24812486.CrossRefGoogle Scholar
Cama, J., Ganor, J., Ayora, C. and Lasaga, C.A. (2000) Smectite dissolution kinetics at 80°C and pH 8.8. Geochimica et Cosmochimica Acta, 64, 27012717.CrossRefGoogle Scholar
Cornelis, G., Etschmann, B., Van Gerven, T. and Vandecasteele, C. (2012) Mechanisms and modelling of antimonate leaching in hydrated cement paste suspensions. Cement and Concrete Research, 42, 13071316.CrossRefGoogle Scholar
Dai, Y., Qian, G., Cao, Y., Chi, Y., Xu, Y., Zhou, J., Liu, Q., Xu, Z.P. and Qiao, S. (2009) Effective removal and fixation of Cr(VI) from aqueous solution with Friedel's salt. Journal of Hazardous Materials, 170, 10861092.CrossRefGoogle ScholarPubMed
Dauzères, A., Le Bescop, P., Cau-Dit-Coumes, C., Brunet, F., Bourbon, X., Timonen, J., Voutilainen, M., Chomat, L. and Sardini, P. (2014) On the physicochemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial pressure. Cement and Concrete Research, 58, 7688.CrossRefGoogle Scholar
Ganor, J., Mogollón, J.L. and Lasaga, A.C. (1999) Kinetics of gibbsite dissolution under low ionic strength conditions. Geochimica et Cosmochimica Acta, 63, 16351651.CrossRefGoogle Scholar
Gardner, L.R. (1970) A chemical model for the origin of gibbsite from kaolinite. American Mineralogist, 55, 13801389.Google Scholar
Gaucher, E.C. and Blanc, P. (2006) Cement/clay interactions – A review: Experiments, natural analogues, and modeling. Waste Management, 26, 776788.CrossRefGoogle ScholarPubMed
Goñi, S. and Guerrero, A. (2003) Accelerated carbonation of Friedel's salt in calcium aluminate cement paste. Cement and Concrete Research, 33, 2126.CrossRefGoogle Scholar
Gougar, M.L.D., Scheetz, B.E. and Roy, D.M. (1996) Ettringite and C–S–H Portland cement phases for waste ion immobilization: A review. Waste Management, 16, 295303.CrossRefGoogle Scholar
Hem, J.D. and Roberson, C.E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution. Geological Survey Water-Supply Paper, 1827-A. US Department of the Interior, Washington.Google Scholar
Hsu, P.H. (1966) Formation of gibbsite from aging hydroxy-aluminum solutions. Soil Science Society of America Journal, 30.CrossRefGoogle Scholar
Iwaida, T., Nagasaki, S. and Tanaka, S. (2001) Sorption behavior of strontium onto C–S–H (calcium silicate hydrated phases). Pp. 901904 in: Studies in Surface Science and Catalysis (Yasuhiro Iwasawa, N.O. and Hironobu, K., editors). Elsevier.Google Scholar
Johnson, E.A., Rudin, M.J., Steinberg, S.M. and Johnson, W.H. (2000) The sorption of selenite on various cement formulations. Waste Management, 20, 509516.CrossRefGoogle Scholar
Kindness, A., Lachowski, E.E., Minocha, A.K. and Glasser, F.P. (1994) Immobilisation and fixation of molybdenum (VI) by Portland cement. Waste Management, 14, 97102.CrossRefGoogle Scholar
Klinger, M. and Jäger, A. (2015) Crystallographic Tool Box (CrysTBox): automated tools for transmission electron microscopists and crystallographers. Journal of Applied Crystallography, 48, 20122018.CrossRefGoogle ScholarPubMed
Köhler, S.J., Bosbach, D. and Oelkers, E.H. (2005) Do clay mineral dissolution rates reach steady state? Geochimica et Cosmochimica Acta, 69, 19972006.CrossRefGoogle Scholar
Lasaga, A.C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, USA.CrossRefGoogle Scholar
Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E. and Gaucher, E.C. (2009) Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. Journal of Hydrology, 364, 5872.CrossRefGoogle Scholar
Marty, N.C.M., Cama, J., Sato, T., Chino, D., Villiéras, F., Razafitianamaharavo, A., Brendlé, J., Giffaut, E., Soler, J.M., Gaucher, E.C. and Tournassat, C. (2011) Dissolution kinetics of synthetic Na-smectite. An integrated experimental approach. Geochimica et Cosmochimica Acta, 75, 58495864.CrossRefGoogle Scholar
Marty, N.C.M., Munier, I., Gaucher, E.C., Tournassat, C., Gaboreau, S., Vong, C.Q., Giffaut, E., Cochepin, B. and Claret, F. (2014) Simulation of Cement/Clay Interactions: Feedback on the Increasing Complexity of Modelling Strategies. Transport in Porous Media, 104, 385405.CrossRefGoogle Scholar
Marty, N.C.M., Bildstein, O., Blanc, P., Claret, F., Cochepin, B., Gaucher, E.C., Jacques, D., Lartigue, J.-E., Liu, S., Mayer, K.U., Meeussen, J.C.L., Munier, I., Pointeau, I., Su, D. and Steefel, C.I. (2015a) Benchmarks for multicomponent reactive transport across a cement/clay interface. Computational Geosciences, 19, 635653.CrossRefGoogle Scholar
Marty, N.C.M., Claret, F., Lassin, A., Tremosa, J., Blanc, P., Madé, B., Giffaut, E., Cochepin, B. and Tournassat, C. (2015b) A database of dissolution and precipitation rates for clay-rocks minerals. Applied Geochemistry, 55, 108118.CrossRefGoogle Scholar
Marty, N.C.M., Grangeon, S., Warmont, F. and Lerouge, C. (2015c) Alteration of nanocrystalline calcium silicate hydrate (C–S–H) at pH 9.2 and room temperature: a combined mineralogical and chemical study. Mineralogical Magazine, 79, 437458.CrossRefGoogle Scholar
Matschei, T., Lothenbach, B. and Glasser, F.P. (2007) The AFm phase in Portland cement. Cement and Concrete Research, 37, 118130.CrossRefGoogle Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Mikrochimica Acta, 114–115, 363376.CrossRefGoogle Scholar
Metz, V. and Ganor, J. (2001) Stirring effect on kaolinite dissolution rate. Geochimica et Cosmochimica Acta, 65, 34753490.CrossRefGoogle Scholar
Miller, W., Alexander, R., Chapman, N., Mckinlely, I. and Smellie, J. (2000) Chapter 4: Analogues of repository materials. Pp. 65152 in: Geological Disposal of Radioactive Waste and Natural Analogues Lessons from Nature and Archaeology (Miller, W., Alexander, R., Chapman, N. and Mckinlely, I., editors). Waste Management Series, 2. Elsevier.Google Scholar
Moulin, I., Stone, W.E.E., Sanz, J., Bottero, J.Y., Mosnier, F. and Haehnel, C. (2000) Retention of zinc and chromium ions by different phases of hydrated calcium aluminate: A solid-state 27Al NMR study. Journal of Physical Chemistry B, 104, 92309238.CrossRefGoogle Scholar
Parkhurst, D.L. and Appelo, C.A.J. (1999) User's Guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water Resources Investigations Report 99-4259. U.S. Geological Survey, Denver, Colorado, USA, 312 pp.Google Scholar
Pointeau, I., Coreau, N. and Reiller, P.E. (2008) Uptake of anionic radionuclides onto degraded cement pastes and competing effect of organic ligands. Radiochimica Acta, 96, 367374.CrossRefGoogle Scholar
Pollmann, H., Stefan, S. and Stern, E. (2006) Synthesis, characterization and reaction behaviour of lamellar AFm phases with aliphatic sulfonate-anions. Cement and Concrete Research, 36, 20392048.CrossRefGoogle Scholar
Qiu, X., Sasaki, K., Takaki, Y., Hirajima, T., Ideta, K. and Miyawaki, J. (2015) Mechanism of boron uptake by hydrocalumite calcined at different temperatures. Journal of Hazardous Materials, 287, 268277.CrossRefGoogle ScholarPubMed
Rapin, J.P., Renaudin, G., Elkaim, E. and Francois, M. (2002) Structural transition of Friedel's salt 3CaO·Al2O3·CaCl2·10H2O studied by synchrotron powder diffraction. Cement and Concrete Research, 32, 513519.CrossRefGoogle Scholar
Renaudin, G., Kubel, F., Rivera, J.P. and Francois, M. (1999) Structural phase transition and high temperature phase structure of Friedels salt, 3CaO·Al2O3· CaCl2·10H2O. Cement and Concrete Research, 29, 19371942.CrossRefGoogle Scholar
Segni, R., Vieille, L., Leroux, F. and Taviot-Guého, C. (2006) Hydrocalumite-type materials: 1. Interest in hazardous waste immobilization. Journal of Physics and Chemistry of Solids, 67, 10371042.CrossRefGoogle Scholar
Shi, Z., Lothenbach, B., Geiker, M.R., Kaufmann, J., Leemann, A., Ferreiro, S. and Skibsted, J. (2016) Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 88, 6072.CrossRefGoogle Scholar
Tits, J., Geipel, G., Macé, N., Eilzer, M. and Wieland, E. (2011) Determination of uranium(VI) sorbed species in calcium silicate hydrate phases: A laser-induced luminescence spectroscopy and batch sorption study. Journal of Colloid and Interface Science, 359, 248256.CrossRefGoogle ScholarPubMed
Trapote-Barreira, A., Cama, J. and Soler, J.M. (2014) Dissolution kinetics of C–S–H gel: Flow-through experiments. Physics and Chemistry of the Earth, Parts A/B/C, 70–71, 1731.CrossRefGoogle Scholar
Van Es, E., Hinchliff, J., Felipe-Sotelo, M., Milodowski, A.E., Field, L.P., Evans, N.D.M. and Read, D. (2015) Retention of chlorine-36 by a cementitious backfill. Mineralogical Magazine, 79, 12971305.CrossRefGoogle Scholar
Supplementary material: File

Marty et al. supplementary material

Supplementary Tables A1–A6

Download Marty et al. supplementary material(File)
File 314.9 KB