Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T21:23:48.508Z Has data issue: false hasContentIssue false

Discussion on Dill et al. (2007) ‘Cu-Fe-U phosphate mineralization of the Hagendorf-Pleystein pegmatite province, Germany: with special reference to laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of limonite-cored torbernite’, Mineralogical Magazine, 71, 371–387

Published online by Cambridge University Press:  05 July 2018

R. L. Romer*
Affiliation:
GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany
*

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Discussion
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourdon, B., Turner, S., Henderson, G. and Lundstrom, C.C. (2003) Introduction to U-series geochemistry. Pp. 119 in: U-series Geochemistry (B. Bourdon, G. Henderson, Lundstrom, C.C. and S. Turner, editors). Reviews in Mineralogy & Geochemistry, 52, Mineralogical Society of America and the Geochemical Society, Washington, D.C. CrossRefGoogle Scholar
Carl, C. and Dill, H.G. (1983) Uranium disequilibria and modern redistribution phenomena in alteration zones in the Hohensteinweg uranium occurrences. Uranium, 1, 113125.Google Scholar
Dill, H.G., Gerdes, A. and Weber, B. (2007) Cu-Fe-U phosphate mineralization of the Hagendorf-Pleystein pegmatite province, Germany: with special reference to laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of limonite-cored tor-bernite. Mineralogical Magazine, 71, 371387.CrossRefGoogle Scholar
Finger, F., Gerdes, A., Janousek, V., Rene, M. and Riegler, G. (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. Journal of Geosciences, 52, 928.Google Scholar
Franke, W. (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Pp. 3561 in: Orogenic Processes: Quantification and Modelling in the Variscan Belt (W Franke, V. Haak, O. Oncken and D. Tanner, editors). Special Publications, 179, Geological Society, London.Google Scholar
Glodny, J. (1997) Der Einflufi der Deformation und fluidinduzierter Diaphthorese auf radioaktive Zerfallssysteme in Kristallingesteinen. Dissertation, Universitat Minister, Germany, 262 pp.Google Scholar
Glodny, J., Grauert, B., Fiala, J., Vejnar, Z. and Krone, A. (1998) Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U-Pb zircon, monazite, garnet, columbite and Rb-Sr muscovite data. International Journal of Earth Sciences, 87, 124134.Google Scholar
Jonckheere, R.C. and Gogen, K. (2001) A Monte Carlo simulation of the size distribution of latent alpha-recoil tracks. Nuclear instruments & methods in physics research. Section B — Beam Interactions with Materials and Atoms, 30, 15711587.Google Scholar
Linnen, R.L. and Keppler, H. (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust. Contributions to Mineralogy and Petrology, 128, 213227.CrossRefGoogle Scholar
Ludwig, K.R. (1978) Uranium-daughter migration and U/Pb isotope apparent ages of uranium ores Shirley Basin, Wyoming. Economic Geology, 73, 2949.CrossRefGoogle Scholar
Mauthner, M.H.F., Mortensen, J.K., Groat, LA. and Ecrit, T.S. (1995) Geochronology of the Little Nahanni pegmatite group, Selwyn Mountains, southwestern Northwest Territories. Canadian Journal of Earth Science, 32, 20902097.CrossRefGoogle Scholar
Romer, R.L. (2001) Isotopically heterogeneous initial Pb and continuous 222Rn loss in fossils: The U-Pb systematics of Brachiosaurus brancai. Geochimica et Cosmochimica Ada, 65, 42014213.CrossRefGoogle Scholar
Romer, R.L. (2003) Alpha-recoil in U-Pb geochronol-ogy: effective sample size matters. Contributions to Mineralogy and Petrology, 145, 481491.CrossRefGoogle Scholar
Romer, R.Land Smeds, S.-A. (1994) Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoie aeereetion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Research, 67, 141158.CrossRefGoogle Scholar
Romer, R.L. and Smeds, S.-A. (1996) U-Pb columbite ages of pegmatites from Sveeonorwegian terranes in southwestern Sweden. Precambrian Research, 76, 1530.CrossRefGoogle Scholar
Romer, R.L. and Smeds, S.-A. (1997) U-Pb columbite chronology of post-kinematic Palaeoproterozoie pegmatites in Sweden. Precambrian Research, 82, 8599.CrossRefGoogle Scholar
Romer, R.L. and Wright, J.E. (1992) U-Pb dating of columbites: a geochronologic tool to date magma-tism, metamorphism, and ore deposits. Geochimica et Cosmochimica Ada 56, 21372142.CrossRefGoogle Scholar
Scharer, U. (1984) The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67, 191204.CrossRefGoogle Scholar
Smith, S.R., Foster, G.L., Romer, R.L., Tindle, A.G., Kelley, S.P., Noble, S.R., Horstwood, M., and Breaks, F.W. (2004) U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS. Contributions to Mineralogy and Petrology, 147, 549654.CrossRefGoogle Scholar
Wendt, I. and Carl, C. (1985) U/Pb dating of discordant 0.1 Ma old secondary mineral. Earth and Planetary Science Letters, 73, 278284.CrossRefGoogle Scholar
Ziegler, J.F., Biersack, IP. and Littmark, U. (1985) The stopping and range of ions in solids. In: The Stopping and Range of Ions in Matter (Ziegler, J.F., editor). Vol 1, Pergamon, New York.Google Scholar