Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:26:46.955Z Has data issue: false hasContentIssue false

D'ansite-(Mn), Na21Mn2+(SO4)10Cl3 and d'ansite-(Fe), Na21Fe2+(SO4)10Cl3, two new minerals from volcanic fumaroles

Published online by Cambridge University Press:  05 July 2018

F. Demartin*
Affiliation:
Dipartimento di Chimica, Universita` degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
I. Campostrini
Affiliation:
Dipartimento di Chimica, Universita` degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
C. Castellano
Affiliation:
Dipartimento di Chimica, Universita` degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
C. M. Gramaccioli
Affiliation:
Dipartimento di Chimica, Universita` degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
M. Russo
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, Sez. Napoli - Osservatorio Vesuviano, via Diocleziano 328, 80124 Napoli, Italy
*

Abstract

The new minerals d'ansite-(Mn), Na21Mn2+(SO4)10Cl3, and d'ansite-(Fe), Na21Fe2+(SO4)10Cl3, occur as encrustations in fumaroles at Vesuvius, Naples, Italy and La Fossa crater, Vulcano, Aeolian Islands, Italy, respectively. Both minerals are cubic and crystallize in space group I3d. D'ansite-(Mn) forms colourless translucent tristetrahedral crystals up to 0.2 mm on edge; d'ansite-(Fe) forms aggregates of colourless to white complex isometric crystals of about the same size. Chemical analyses obtained by energy-dispersive spectrometry on an electron microprobe gave the following mean compositions: d'ansite-(Mn), Na2O 39.37, MnO 3.46, MgO 0.13, SO3 49.99, Cl 6.36, O=Cl–1.44, total 97.87 wt.%, corresponding to an empirical formula, on the basis of 43 anions, of Na20.61 (Mn2+0.79Mg0.05)Σ0.84S10.13O40.09Cl2.91; and d'ansite-(Fe), Na2O 39.12, FeO 4.18, MgO 0.12, SO3 49.91, Cl 6.81, O=Cl –1.54, total 98.60 wt.%, corresponding to an empirical formula of Na20.42(Fe2+0.94Mg0.05)Σ0.99S10.08O39.89Cl3.11. The six strongest reflections in the X-ray powder diffraction pattern of d'ansite-(Fe) [listed as dobs(Å) (I) (hkl)] are as follows: 2.807(100)(044), 2.570(37)(235), 1.714(29)(129), 3.384(27)(233), 3.113(26)(134), 2.108(15)(237). The unit-cell parameters obtained from single-crystal data are 15.9291(9) and 15.882(3) Å for d'ansite-(Mn) and d'ansite-(Fe), respectively. The structure of both minerals was refined, using single-crystal diffraction data, to final R parameters of 0.0309 and 0.0336 on reflections with I > 2σ(I). The structure contains three independent Na sites, one of which is partially occupied by Mn2+ or Fe2+, two independent sulfate anions and one chlorine site.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Autenrieth, H. and Braune, G. (1958) Ein neues Salzmineral, seine Eigenschaften, sein Auftreten und seine Existenzbedingungen im System der Salzeozeanischer Salzablagerungen. Naturwissenschaften, 45, 362363.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Garbarini, C., Grillo, S.M., Mozgova, N.N., Organova, N.I., Trubkin, N.V. and Vurro, F. (2000) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. III. Wittite and cannizzarite. The Canadian Mineralogist, 38, 2334.CrossRefGoogle Scholar
Brown, I.D. (2009) Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 109, 68586919.CrossRefGoogle ScholarPubMed
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker, (2001) SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Burzlaff, H. and Grube, H.H. (1980) Strukturverfeinerung und Zwillingsgesetz am Zn-D’Ansit. Zeitschrift für Kristallographie, 152, 8393.CrossRefGoogle Scholar
Burzlaff, H. and Hellner, E. (1961) Zur Struktur der- D’Ansit. Zeitschrift für Elektrochemie, 65, 565571.Google Scholar
Campostrini, I., Demartin, F., Gramaccioli, C.M. and Russo, M. (2011) Vulcano. Tre secoli di mineralogia. Associazione Micro-mineralogica Italiana, Cremona, Italy, 344 pp.Google Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010a) Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 307313.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010b) Adranosite, (NH4)4NaAl2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 315321.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Castellano, C. (2011) Cossaite, (Mg0.5,)Al6(SO4)6 (HSO4)F6·36H2O, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 75, 28472855.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112.in: Sulfate Minerals - Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and B.K. Nordstrom, editors). Reviews in Mineralogy and Geochemistry, 40.Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Lange, J and Burzlaff, H. (1995) Single-crystal data collection with a Laue Diffractometer. Acta Crystallographica, A51, 931936.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility index and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Pinto, D., Balić Žunić, T., Garavelli, A., Garbarino, C., Makovický , E. and Vurro, F. (2006) First occurrence of close-to-ideal kirkiite at Vulcano (Aeolian Islands, Italy): chemical data and single crystal X-ray study. European Journal of Mineralogy, 18, 393401.CrossRefGoogle Scholar
Sheldrick, G.M. (2000) SADABS Area-Detector Absorption Correction Program. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Strunz, H. (1958) Kristallographie von D’Ansit, ein auf marinsedimentären Lagerstätten zu erwartendes Salz. Neues Jahrbuch für Mineralogie, Monatshefte, 1958/8, 152155.Google Scholar
Yihua, Q., Weitian, H. and Kegin, C. (1975) The mineralogical study of d’Ansite, a rare salt mineral first found in China. Acta Geologica Sinica, 49, 180186. [in Chinese with English abstract].Google Scholar