Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T18:12:55.220Z Has data issue: false hasContentIssue false

Daliranite, PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran

Published online by Cambridge University Press:  05 July 2018

W. H. Paar*
Affiliation:
Department of Materials Engineering and Physics (Division of Mineralogy), University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
A. Pring
Affiliation:
Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia The School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
Y. Moëlo
Affiliation:
Institut des Materiaux J. Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssiniere, F-44322 Nantes Cedex 3, France
C. J. Stanley
Affiliation:
The Natural History Museum, Cromwell Road, London SW7 5BD, England, UK
H. Putz
Affiliation:
Department of Materials Engineering and Physics (Division of Mineralogy), University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
D. Topa
Affiliation:
Department of Materials Engineering and Physics (Division of Mineralogy), University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
A. C. Roberts
Affiliation:
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A OE8, Canada
R. S. W. Braithwaite
Affiliation:
School of Chemistry, University of Manchester, Manchester M13 9PL, UK
*

Abstract

Daliranite, ideally PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran, occurs as a rare sulphosalt species at the Carlin-type Zarshouran Au-As deposit North of the town of Takab in the Province of West Azarbaijan, Iran. The new species is associated with orpiment, rarely with galkhaite, hutchinsonite and cinnabar. The strongly silicified matrix of the specimens has veinlets of sphalerite, with rare inclusions of galena and various (Cu)-Pb-As(Sb) sulphosalts. Daliranite occurs as matted nests of acicular and flexible fibres up to 200 μm in length and a width less than a few μm. The colour is orange-red with a pale orange-red streak and the lustre is adamantine. The mineral is transparent and does not fluoresce. The Mohs hardness is <2. Electron microprobe analyses give the empirical formula Pb0.95Tl0.01Hg1.04As2.10S5.91, ideally PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran; the calculated density is 5.93 g cm–3. Unit-cell parameters were determined by an electron-diffraction study and refined from X-ray powder data. Daliranite is monoclinic primitive with a = 19.113(5) Å, b = 4.233(2) Å, c = 22.958(8) Å, β = 114.78(5)°, V = 1686.4 Å3 and Z = 8, a:b:c = 4.515:1:5.424, space group P2, Pm or P2/m. The strongest X-ray powder-diffraction lines [d in Å, (I), (hkl)] are: 8.676, (80), (200); 4.654, (50), (401); 3.870, (40), (211); 3.394, (50), (113); 3.148, (40b), (602); 2.892, (50), (600); 2.724, (100), (703); 2.185, (50), (319). The formula shows a sulphur excess which may correspond to S—S bonding (persulphide). The new sulphosalt is a late phase in the crystallization sequence, and was formed after orpiment, contemporaneously with quartz II, at a temperature between 157 and 193°C. The name honours Dr Farahnaz Daliran (University of Karlsruhe, Germany) in recognition of her outstanding contributions to research on ore deposits, especially Au, Zn and Fe, in Iran.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asadi, H.H., Voncken, J.H. and Hale, M. (1999) Invisible gold at Zarshuran. Economic Geology, 94, 13671374.CrossRefGoogle Scholar
Asadi, H.H., Voncken, J.H., Kuhnel, R.A. and Hale, M. (2000) Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, northwest Iran. Mineralium Deposita, 35, 656671.CrossRefGoogle Scholar
Bailey, T.D., Banda, R.M., Craig, D.C., Dance, I.G., Ma, I.N. and Scudder, M.L. (1991) Mercury polysulfide complexes, [Hg(Sx)y]2—: syntheses, mercury-199 NMR studies in solution, and crystal structure of (Ph4P)4[Hg(S4)2]Br2. Inorganic Chemistry, 30, 187—191.CrossRefGoogle Scholar
Bariand, P. (1963) Contribution a la mineralogie de l’Iran. Bulletin de la Societe franqaise de Mineralogie et de Cristallographie, 86, 17—64.Google Scholar
Criddle, A.J. and Stanley, C.J. (1993) The Quantitative Data File for Ore Minerals (3rd edition). The Commission on Ore Mineralogy, International Mineralogical Association. Chapman and Hall, London.CrossRefGoogle Scholar
Daliran, F. (2003) Discovery of 1.1 kg/t gold and 2 kg/t silver in mud precipitates of a cold spring from the Takab geothermal field, NW-Iran. Pp. 461—464 in: Mineral Exploration and Sustainable Development (D.G. Eliopoulos et al., editors). Millpress, Rotterdam, The Netherlands.Google Scholar
Daliran, F. (2008) The carbonate rock-hosted epithermal gold deposit of Agdarreh, Takab geothermal field, Iran — hydrothermal alteration and mineralisation. Mineralium Deposita, 43, 383—404.CrossRefGoogle Scholar
Daliran, F. and Walther, J. (2000) A comparative study of the sediment-hosted gold deposits of Agdarreh and Zarshuran at N-Takab geothermal field, NW- Iran. Part II: fluid inclusion study. European Journal of Mineralogy, Beihefte 12, 32.Google Scholar
Daliran, F., Walther, J. and Stiiben, D. (1999) Sediment- hosted disseminated gold mineralization in the North-Takab geothermal field. Pp. 837—840 in: Proceedings of Joint SGA-IAGOD International Meeting, London.Google Scholar
Daliran, F., Hofstra, A.H., Walther, J. and Stiiben, D. (2002) Agdarreh and Zarshuran SRHDG deposits, Takab Region, NW-Iran. Proceedings of the GSA Annual meeting, Paper 63-8.Google Scholar
Duval, B., Moelo, Y. and Picot, P. (1986) Mise en evidence d’un derive de la zinkenite, riche en arsenic et bismuth, associe a orpiment, sartorite antimonifere et zinkenite (gisement de Julcani, P^rou). Bulletin de la Societe francaise de Mineralogie et de Cristallographie, 109, 649—655.Google Scholar
Jambor, J.L. (1967) New lead sulfantimonides from Madoc, Ontario. Part 2 — Mineral descriptions. The Canadian Mineralogist, 9, 191—213.Google Scholar
Jay, J.A., Morel, F.M. and Hemond, H.F. (2000) Mercury Speciation in the Presence of Polysulfides. Environmental Science and Technology, 34, 2196—2200.CrossRefGoogle Scholar
Lescuyer, J.L., Hushmand Zadeh, A. and Daliran, F. (2003) Gold Metallogeny in Iran: a preliminary review. Pp. 1185 — 1188 in: Mineral Exploration and Sustainable Development (D.G. Eliopoulos et al., editors), Millpress, Rotterdam, The Netherlands.Google Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschritte Mineralogie, 63, 45—89.Google Scholar
Makovicky, E. (1993) Rod-based sulphosalt structures derived from the SnS and PbS archetypes. European Journal of Mineralogy, 5, 545—591.CrossRefGoogle Scholar
Mantienne, J. (1974) La mineralisation thallifere de Jas- Roux (Hautes-Alpes). Thesis, University of Paris, 153 pp.Google Scholar
Mehrabi, B., Yardley, G. and Cann, J.R. (1999) Sediment-hosted disseminated gold mineralisation at Zarshuran, NW-Iran. Mineralium Deposita, 34, 673—696.CrossRefGoogle Scholar
Moelo, Y. (1983) Contribution a l’etude des conditions naturelles de formation des sulfüres complexes d’antimoine et plomb. Document series, 57, BRGM, Orleans, France, 624 pp.Google Scholar
Moelo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W.H., Nickel, E.H., Graeser, S., Karup-Moller, S., Balic-Zunic, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub- commitee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 7—46.CrossRefGoogle Scholar
Niizeki, N. and Buerger, M.J. (1957) The crystal structure of livingstonite, HgSb4S8. Zeitschrift für Kristallographie, 109, 129—157.Google Scholar
Orlandi, P., Meerschaut, A., Palvadeau, P. and Merlino, S. (2002) Lead-antimony sulfosalts from Tuscany (Italy). V. Definition and crystal structure of moeloite, Pb6Sb6S14(S3), a new mineral from the Ceragiola marble quarry. European Journal of Mineralogy, 14, 599—606.CrossRefGoogle Scholar
Paar, W.H. and Putz, H. (2008) Endbericht zum Teilprojekt Epithermale Goldvererzungen in der Takab-Region NW-Iran. Austrian Academy of Sciences (OAW; Kommission für Grundlagen der Mineralrohstoffforschung). Unpublished report, 16 pp.Google Scholar
Paquette, K.E. and Helz, G.R. (1997) Inorganic speciation of mercury in sulfidic waters: the importance of zero-valent sulfür. Environmental Science and Technology, 31, 2148—2153.CrossRefGoogle Scholar
Pring, A. (2001) The crystal chemistry of the sartorite group of minerals from Lengenbach, Binntal. Switzerland: A HRTEM study. Schweizerische Mineralogische und Petrographische Mitteilungen, 81, 69—87.Google Scholar
Sack, R.O. and Ebel, D.S. (1993) As-Sb exchange energies in tetrahedrite-tennantite fahlores and bournonite-seligmannite solid solutions. Mineralogical Magazine, 57, 635—642.CrossRefGoogle Scholar
Srikrishnan, T. and Nowacki, W. (1975) A redetermination of the crystal structure of livingstonite, HgSb4S8. Zeitschrift fir Kristallographie, 141, 174—192.Google Scholar
Tossell, J.A. (1999) Theoretical studies on the formation of mercury complexes in solution and the dissolution and reactions of cinnabar. American Mineralogist, 84, 877883.CrossRefGoogle Scholar
Walia, D.S. and Chang, L.L.Y. (1973) Investigations in the systems PbS-Sb2S3-As2S3 and PbS-Bi2S3-As2S3. The Canadian Mineralogist, 12, 113119.Google Scholar
Wu, I.J. and Birnie, R.W. (1977) The bournonite- seligmannite solid solution. American Mineralogist, 62, 10971100.Google Scholar