Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T22:26:20.324Z Has data issue: false hasContentIssue false

The Cu-Bi-S system: results from low-temperature experiments

Published online by Cambridge University Press:  05 July 2018

Naiding Wang*
Affiliation:
Institute of Mineralogy and Petrography, University of Heidelberg, Germany

Abstract

Low-temperature experiments in the ‘dry’ ternary Cu-Bi-S system, conducted by using sulphidation methods down to 120°C produced a new metastable solid solution series Cu10Bi2S13-Cu5Bi2S8 at 178°C coexisting with CuS. This transformed slowly at 190–200°C to an assemblage of either CuS-(Cu,Bi)8S9 or CuS-Bi2S3 or both, depending on available sulphur. Sulphidation experiments on Cu3BiS3 similarly revealed a solid solution range for the phase (Cu,Bi)8S9 of up to Cu/Bi = 3/2 at 178–190°C, and a lower stability limit of 138°C Isothermal sections of the system were constructed at 200 and 300°C, based on the new information collected but excluding the metastable series.

Type
Experimental Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bente, K. (1986) Methodical and genetic aspects of sulfur fugacity studies of bismuth sulfosalts. Neues Jahrb. Mineral. Abh., 153, 312-4Google Scholar
Bente, K., Kupcik, V. and Moh, G. H. (1977) Klaprothite. Neues. Jahrb. Mineral, Abh., 131, 39-2.Google Scholar
Buhlmann, E. (1965) Untersuchungen im System Cu-Bi-S. Ph.D. thesis, University of Heidelberg, 102 PP.Google Scholar
Buhlmann, E. (1971) Untersuchungen im System Bi2S3-Cu2S und geologische SchluBfolgerungen. Neues Jahrb. Mineral, Mh., 137-41Google Scholar
Chen, T. T. and Chang, L. L. Y. (1974) Investigations in the System PbS-Cu2S-Bi2S3 and Ag2S-Cu2S-Sb2S3. Canad. Mineral., 12, 404–10.Google Scholar
Godovikov, A. A., Fedorova, Zh. N., Pavlyuchenko, V. S. and Ptitsyn, A. B. (1972) New sulfosalt Cu3Bi3S7 as an intermediate phase of the cuprous sulfide-bismuth sulfide-sulfur system. Dokl. Akad. Nauk SSSR, 202, 912–4.(in Russian)Google Scholar
Kodera, M., Kupcik, V. and Makovicky, E. (1970) Hodrushite, a new sulphosalt. Mineral. Mag., 37, 641–8.Google Scholar
Makovicky, E. and Maclean, W. H. (1972) Electron microprobe analysis of Hodrushite. Canad. Mineral., 11, 504–13.Google Scholar
Mariolacos, K. (1980) Phase relations in the system Bi2S3-PbS-CuPbSiS3 at 450°C and its extension in the system Bi2S3-PbS-Cu2S. Neues. Jahrb. Mineral, Mh., 373-80.Google Scholar
Nuffield, E. W. (1947) Studies of mineral sulfo-salts: XI — Wittichenite (Klaprothite). Econ. Geol, 42, 147–60.Google Scholar
Springer, G. and Demirsoy, S. (1969) Beitrag zur Klarung der Existenz von Klaprothit. Neues Jahrb. Mineral, Mh., 32-7.Google Scholar
Sugaki, A. (1972) Phase relations of the Cu2S-Bi2S3system. Tech. Rep., Yamaguchi University, Vol. 1, No. 1, 45-70.Google Scholar
Sugaki, A. and Shima, H. (1971) The phase equilibrium study of the Cu-Bi-S system. IMA-IAGOD-Meetings ‘70; Proc. Abstr. IMA-VoL, 270-1.Google Scholar
Sugaki, A., Shima, H. and Kitakaze, A. (1978) The phase equilibrium of the system copper-bismuth-sulfur below 400°C, especially the relation between emplectite and cuprobismutite. Sulfosoli, Platinovye Miner., Rudn. Mikrosk. Mater, S'ezda MMA, 11th 1978 (pub. 1980).Google Scholar
Tekeuchi, Y. and Ozawa, T. (1975) The structure of Cu4Bi4S9 and its relation to the structure of CuS and Bi2S3. Zeits. Krist. 141, 217-32.Google Scholar
Wang, N. (1982) Sulfidization experiments performed at low temperatures. Neues Jahrb. Mineral, Abh., 144, 319–24.Google Scholar
Wang, N. (1984) A contribution to the Cu-Fe-S system: The sulfidization of bornite at low temperatures. Neues Jahrb. Mineral, Mh., 346-52.Google Scholar
Wang, N. (1988) Experimental study of the Cu-Ge-S ternary phases and their mutual relations. Neues Jahrb. Mineral, Abh., 159, 137–51.Google Scholar
Wang, N. (1989) Emplectite: Synthesis, powder data and thermal stability. Neues Jahrb. Mineral, Mh., 521-3.Google Scholar