Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T03:23:38.386Z Has data issue: false hasContentIssue false

Crystallographic ordering of aluminium in laueite at Hagendorf-Süd

Published online by Cambridge University Press:  02 January 2018

I. E. Grey*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
E. Keck
Affiliation:
Algunderweg 3, 92694 Etzenricht, Germany
W. G. Mumme
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
C. M. MacRae
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
J. R. Price
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
A. M. Glenn
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
C. J. Davidson
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
*

Abstract

Crystals of laueite, Mn2+Fe23+(PO4)2(OH)2·8H2O, from the Cornelia mine open cut, Hagendorf Süd, Bavaria, are zoned due to aluminium incorporation at the iron sites, with analysed Al2O3 contents varying up to 11 wt.%. Synchrotron X-ray data were collected on two crystals with different Al contents and the structures refined. The laueite structure contains two independent Fe3+-containing sites; M2 and M3, which alternate in 7 Å corner-connected octahedral chains. The coordination polyhedra are different for the two sites, M2O4(OH)2 and M3O2(OH)2(H2O)2 respectively. The structure refinements show that Al preferentially orders into site M3. Refined site occupancies for M2 and M3 for the two crystals are: for crystal L-1, M2 = 0.70(1) Fe + 0.30(1) Al, M3 = 0.54(1) Fe + 0.46(1) Al and for crystal L-2, M2 = 0.67(1) Fe + 0.33(1) Al, M3 = 0.48(1) Fe + 0.52(1) Al. For crystal L-2, the octahedral chains have dominant Fe in M2, alternating with dominant Al in M3 along the chain, an ordering phenomenon not previously reported for laueite-related minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adiwidjaja, G., Friese, K., Klaska, K.-H. and Schlüter, J. (1999) The crystal structure of kastningite (Mn,Fe,Mg)(H2O)4[Al2(OH)2(H2O)2(PO4)2]·2H2O-a new hydroxyl aquated orthophosphate hydrate mineral. Zeitschrift für Kristallographie, 214, 465468.Google Scholar
Armstrong, J.T. (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF and Phi-Rho-Z procedures. Microbeam Analysis, 239246.Google Scholar
Baur, W.H. (1969) A comparison of the crystal structures of pseudolaueite and laueite. American Mineralogist, 54, 13121323.Google Scholar
Baur, W.H. and Rao, B.R. (1967) The crystal structure of metavauxite. Naturwissenschaften, 54, 561. Birch, W.D., Grey, I.E., Mills, S.J., Pring, A. Wilson, N.C. and Keck, E. (2011) Nordgauite, MnAl2(PO4)2(F,OH)2.5.5H2O, a new mineral from the Hagendorf Süd pegmatite, Bavaria, Germany: description and crystal structure. Mineralogical Magazine, 75, 269278.Google Scholar
Cavellec, M., Riou, D. and Ferey, G. (1994) Oxyfluorinated microporous compounds. XI. Synthesis and crystal structure of ULM-10: The first bidimensional mixed-valence iron fluorophosphates with intercalated ethylenediamine. Journal of Solid State Chemistry, 112, 441447.CrossRefGoogle Scholar
Cooper, M. and Hawthorne, F.C. (1994) The crystal structure of curetonite, a complex heteropolyhedral sheet mineral. American Mineralogist, 79, 545549.Google Scholar
Dill, H.G., Weber, B., Gerdes, A. and Melcher, F. (2008) The Fe-Mn phosphate aplite ‘Silbergrube’ near Waidhaus, Germany: epithermal phosphate mineralization in the Hagendorf-Pleystein province. Mineralogical Magazine, 72, 11191144.CrossRefGoogle Scholar
Fanfani, I. and Zanazzi, P.F. (1971) The crystal structure of butlerite. American Mineralogist, 56, 751757.Google Scholar
Fanfani, L., Tomassini, M., Zanazzi, P.F. and Zanzari, A.R. (1978) The crystal structure of strunzite, a contribution to the crystal chemistry of basic ferricmanganous hydrated phosphates. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 7787.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Galliski, M.A. and Hawthorne, F.C. (2002) Refinement of the crystal structure of ushkovite from Nevados de Palermo, Republica Argentina. The Canadian Mineralogist, 40, 929937.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G., Neville, S.M., Wilson, N.C. and Birch, W.D. (2010) Jahnsite-whiteite solid solutions and associated minerals in the phosphate pegmatite at Hagendorf-Süd, Bavaria, Germany. Mineralogical Magazine, 74, 969978.CrossRefGoogle Scholar
Grey, I.E., Shanks, F.L., Wilson, N.C., Mumme, W.G. and Birch, W.D. (2011) Carbon incorporation in plumbogummite-group minerals. Mineralogical Magazine, 75, 145158.CrossRefGoogle Scholar
Grey, I.E., MacRae, C.M., Keck, E. and Birch, W.D. (2012) Aluminium-bearing strunzite derived from Jahnsite at the Hagendorf-Süd pegmatite, Germany. Mineralogical Magazine, 76, 11651174.CrossRefGoogle Scholar
Hawthorne, F.C. (1985) Towards a structural classification of minerals: The VIMIVT2Fn minerals. American Mineralogist, 70, 455473.Google Scholar
Hawthorne, F.C. (1988) Sigloite: The oxidation mechanism in [M3+ 2 (PO4)2(OH)2(H2O)2]2-structures. Mineralogy and Petrology, 38, 201211.CrossRefGoogle Scholar
Hurlbut, C.S. and Honea, R. (1962) Sigloite, a new mineral from Llallagua, Bolivia. American Mineralogist, 47, 18.Google Scholar
Kampf, A.R., Hughes, J.M., Nash, B. and Marty, J. (2014) Kokinosite, Na2Ca2(V10O26)·24H2O, a new decavanadate mineral species from the St. Jude mine, Colorado: crystal structure and descriptive mineralogy. The Canadian Mineralogist, 52, 1525.CrossRefGoogle Scholar
Krivovichev, S.V. (2004) Topological and geometrical isomerism in minerals and inorganic compounds with laueite-type heteropolyhedral sheets. Neues Jahrbuch für Mineralogie Monatshafte, 2004, 209220.CrossRefGoogle Scholar
Leavens, P.B. and Rheingold, A.L. (1988) Crystal structures of gordonite, MgAl2(PO4)2(OH)2 (H2O)6(H2O)2, and its Mn analog. Neues Jahrbuch für Mineralogie Monatshafte, 1988, 265270.Google Scholar
Meisser, N., Brugger, J., Krivovichev, S., Armbruster, T. and Favreau, G. (2012) Description and crystal structure of maghrebite, MgAl2(AsO4)2(OH)2·8H2O, from Aghbar, Anti-Atlas, Morocco: first arsenate in the laueite mineral group. European Journal of Mineralogy, 24, 717726.CrossRefGoogle Scholar
Moore, P.B. (1970) Structural hierarchies among minerals containing octahedrally coordinating oxygen. I. Stereoisomerism among corner-sharing octahedral and tetrahedral chains. Neues Jahrbuch für Mineralogie Monatshafte, 1970, 163173.Google Scholar
Moore, P.B. (1973) Pegmatite phosphates: Descriptive mineralogy and crystal chemistry. The Mineralogical Record, 4, 103130.Google Scholar
Moore, P.B. (1975) Laueite, pseudolaueite, stewartite and metavauxite: A study in combinatorial polymorphism. Neues Jahrbuch für Mineralogie Abhandlugen, 1975, 148159.Google Scholar
Moore, P.B. and Araki, T. (1974) Stewartite, Mn 2+ Fe3+ 2 (OH)2(H2O)6[PO4]3·2H2O: Its atomic arrangement. American Mineralogist, 59, 12721276.Google Scholar
Moore, P.B. and Ito, J. (1978) I. Whiteite, a new species, and a proposed nomenclature for the jahnsitewhiteite complex series, II. New data on xanthoxenite. III. Salmonsite discredited. Mineralogical Magazine, 42, 309323.CrossRefGoogle Scholar
Moore, P.B. and Kampf, A.R. (1992) Beraunite: Refinement, comparative crystal chemistry, and selected bond valences. Zeitschrift für Kristallographie, 201, 263281.Google Scholar
Mücke, A. (1981) The paragenesis of the phosphate minerals of the Hagendorf pegmatite-a general view. Chemie der Erde, 40, 217234.Google Scholar
Nizamoff, J. (2006) The mineralogy, geochemistry and phosphate paragenesis of the Palermo #2 pegmatite, North Groton, New Hampshire. MSc Thesis, University of New Orleans, USA. Putnis, A. (2000) Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.Google Scholar
Scholz, R., Chukanov, N.V., Menezes Filho, L.A.D., Attencio, D., Lagoeiro, L., Belotti, F.M., Chaves, M.L.S.C., Romano, A.W., Brandao, P.R., Belakovskiy, D.I. and Pekov, I. (2014) Césarferreiraite, Fe 2+ Fe3+ 2 (AsO4)2(OH)2·8H2O, from Eduardo mine, Conselheiro Pena, Minas Gerais, Brazil: Second arsenate in the laueite mineral group. American Mineralogist, 99, 607611.CrossRefGoogle Scholar
Segeler, C.G., Moore, P.B. Dyar, M.D., Leans, F. and Ferraiolo, J.A. (2012) Ferrolaueite, a new mineral from Monmouth County, New Jersey, USA, Australian Journal of Mineralogy, 16, 6976.Google Scholar
Sejkora, J., Skoda, R., Ondrus, P., Beran, P. and Süsser, C. (2006) Mineralogy of phosphate accumulations in the Huber stock, Krasno ore district, Slavkovsky les area, Czech Republic. Journal of the Czech Geological Society, 51, 103147.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Shigley, J.E. and Brown, G.E. (1985) Occurrence and alteration of phosphate minerals at the Stewart Pegmatite, Pala District, San Diego County, California. American Mineralogist, 70, 395408.Google Scholar
Wang, X., Liu, L., Cheng, H., Ross, K. and Jacobson, A.J. (2000) Synthesis and crystal structures of [H3N(CH2)2NH3]NbMOF(PO4)2(H2O)2, M = Fe, Co and [H3N(CH2)2NH3]Ti(Fe0.9Cr0.1)(F1.3O0.7) (H0.3PO4)2(H2O)2. Journal of Materials Chemistry, 10, 12031208.CrossRefGoogle Scholar
Yakovenchuk, V.N., Keck, E., Krivovichev, S.V., Pakhomovsky, Y.A., Selivanova, E.A., Mikhailova, J.A., Chernyatieva, A.P. and Ivanyuk, G.Yu. (2012) Whiteite-(CaMnMn), CaMnMn2Al2[PO4 ] 4 (OH)2·8H2O, a new mineral from the Hagendorf-Süd granitic pegmatite, Germany. Mineralogical Magazine, 76, 27612771.CrossRefGoogle Scholar
Supplementary material: File

Grey et al. supplementary material

CIF 1

Download Grey et al. supplementary material(File)
File 13.4 KB
Supplementary material: File

Grey et al. supplementary material

CIF 2

Download Grey et al. supplementary material(File)
File 13.4 KB