Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T18:53:55.688Z Has data issue: false hasContentIssue false

Crystallization and destabilization of eudialyte-group minerals in peralkaline granite and pegmatite: a case study from the Ambohimirahavavy complex, Madagascar

Published online by Cambridge University Press:  28 February 2018

Guillaume Estrade*
Affiliation:
University of Toulouse, GET, CNRS, IRD, OMP, 14 Av. Edouard Belin, F-31400 Toulouse, France
Stefano Salvi
Affiliation:
University of Toulouse, GET, CNRS, IRD, OMP, 14 Av. Edouard Belin, F-31400 Toulouse, France
Didier Béziat
Affiliation:
University of Toulouse, GET, CNRS, IRD, OMP, 14 Av. Edouard Belin, F-31400 Toulouse, France
*

Abstract

Eudialyte-group minerals (EGM) are very common in highly evolved SiO2-undersaturated syenites and are characteristic minerals of agpaitic rocks. Conversely, they are extremely rare in peralkaline granites, with only a handful of EGM occurrences reported worldwide. Here, we study two new examples of EGM occurrence in two types of peralkaline pegmatitic granites from the Cenozoic Ambohimirahavavy complex, and assess the magmatic conditions required to crystallize EGM in peralkaline SiO2-oversaturated rocks. In the transitional granite (contains EGM as accessory minerals) EGM occur as late phases and are the only agpaitic and major rare-earth element (REE) bearing minerals. In the agpaitic granite (contains EGM as rock-forming minerals) EGM are early-magmatic phases occurring together with two other agpaitic minerals, nacareniobsite-(Ce) and turkestanite. In these granites, EGM are partly-to-completely altered and replaced by secondary assemblages consisting of zircon and quartz in the transitional granite and an unidentified Ca-Na zirconosilicate in the agpaitic granite. Ambohimirahavavy EGM, as well as those from other peralkaline granites and pegmatites, are richer in REE and poorer in Ca than EGM in nepheline syenites. We infer that magmatic EGM are rare in SiO2-oversaturated rocks because of low Cl concentrations in these melts. At Ambohimirahavavy, contamination of the parental magma of the agpaitic granite with Ca-rich material increased the solubility of Cl in the melt promoting EGM crystallization. In both granite types, EGM were destabilized by the late exsolution of a fluid and by interaction with an external Ca-bearing fluid.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Katharina Pfaff

References

Aiuppa, A., Baker, D.R. and Webster, J.D. (2009) Halogens in volcanic systems. Chemical Geology, 263, 118.CrossRefGoogle Scholar
Birkett, T.C., Miller, R.R., Roberts, A.C. and Mariano, A.N. (1992) Zirconium-bearing minerals of the Strange Lake intrusive complex, Quebec-Labrador. The Canadian Mineralogist, 30, 191205.Google Scholar
Borst, A.M., Friis, H., Andersen, T., Nielsen, T.F.D., Waight, T.E. and Smit, M.A. (2016) Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems. Mineralogical Magazine, 80, 530.CrossRefGoogle Scholar
Cámara, F., Hawthorne, F.C., Ball, N.A., Bekenova, G., Stepanov, A.V. and Kotel'nikov, P.E. (2010) Fluoroleakeite, NaNa2(Mg2Li)Si8O22F2, a new mineral of the amphibole group from the Verkhnee Espe deposit, Akjailyautas Mountains, Eastern Kazakhstan District, Kazakhstan: description and crystal structure. Mineralogical Magazine, 74, 521528.CrossRefGoogle Scholar
Chevychelov, V.Y. (1999) Chlorine dissolution in fluid-rich granitic melts: The effect of calcium addition. Geochemistry international, 37, 522535.Google Scholar
Donnot, M. (1963) Les Complexes Intrusifs Alcalins de la Province Pétrographique d'Ampasindava et leurs Minéralisations. Bureau des Recherches Géologiques et Minières, Antananarivo.Google Scholar
Estrade, G., Salvi, S., Béziat, D., Rakotovao, S. and Rakotondrazafy, R. (2014 a) REE and HFSE mineralization in peralkaline granites of the Ambohimirahavavy alkaline complex, Ampasindava peninsula, Madagascar. Journal of African Earth Sciences, 94, 141155.CrossRefGoogle Scholar
Estrade, G., Béziat, D., Salvi, S., Tiepolo, M., Paquette, J.-L. and Rakotovao, S. (2014 b) Unusual evolution of silica-under- and -oversaturated alkaline rocks in the Cenozoic Ambohimirahavavy Complex (Madagascar): Mineralogical and geochemical evidence. Lithos, 206–207, 361383.CrossRefGoogle Scholar
Estrade, G., Salvi, S., Béziat, D. and Williams-Jones, A.E. (2015) The Origin of Skarn-Hosted Rare-Metal Mineralization in the Ambohimirahavavy Alkaline Complex, Madagascar. Economic Geology, 110, 14851513.CrossRefGoogle Scholar
Fleet, S.G. and Cann, J.R. (1967) Vlasovite: a second occurrence and a triclinic to monoclinic inversion. Mineralogical Magazine, 36, 233241.CrossRefGoogle Scholar
Ganzeev, A.A. and Grechishchev, O.K. (2003) A new genetic type of rare-metal alkali granites of Madagascar. Russian Geology and Geophysics, 44, 539553.Google Scholar
Geisler, T., Schaltegger, U. and Tomaschek, F. (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements, 3, 4350.CrossRefGoogle Scholar
Giehl, C., Marks, M.A.W. and Nowak, M. (2014) An experimental study on the influence of fluorine and chlorine on phase relations in peralkaline phonolitic melts. Contributions to Mineralogy and Petrology, 167, 121.CrossRefGoogle Scholar
Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E.A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D.G., Shaw, R.A., Thrane, K. and Keulen, N. (2016) Europe's rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72, Part 1, 838856.CrossRefGoogle Scholar
Grew, E.S., Belakovskiy, D.I., Fleet, M.E., Yates, M.G., Mcgee, J.J. and Marquez, N. (1993) Reedmergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern Tien Shan, Tajikistan. European Journal of Mineralogy, 5, 971984.CrossRefGoogle Scholar
Guillong, M., Meier, D.L., Allan, M.M., Heinrich, C.A. and Yardley, B.W.D. (2008) SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Pp. 328333 in: Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (Sylvester, P.J., editor). Mineralogical Association of Canada short course series, Vol. 40. Vancouver, Canada.Google Scholar
Gunter, M.E., Johnson, N.E., Knowles, C.R. and Solie, D.N. (1993) Optical, X-ray, and chemical analysis of four eudialytes from Alaska. Mineralogical Magazine, 57, 743746.CrossRefGoogle Scholar
Gysi, A.P., Williams-Jones, A.E. and Collins, P. (2016) Lithogeochemical vectors for hydrothermal processes in the Strange Lake peralkaline granitic REE-Zr-Nb Deposit. Economic Geology, 111, 12411276.CrossRefGoogle Scholar
Harris, C. (1983) The petrology of lavas and associated plutonic inclusions of Ascension Island. Journal of Petrology, 24, 424470.CrossRefGoogle Scholar
Harris, C. and Rickard, R.S. (1987) Rare-earth-rich eudialyte and dalyite from a peralkaline granite dyke at Straumsvola, Dronning Maud Land, Antarctica. Canadian Mineralogist, 25, 755762.Google Scholar
Harris, C., Cressey, G., Bell, J.D., Atkins, F.B. and Beswetherick, S. (1982) An occurrence of rare-earth-rich eudialyte from Ascension Island, south-atlantic. Mineralogical Magazine, 46, 421425.CrossRefGoogle Scholar
Johnsen, O. and Grice, J.D. (1999) The crystal chemistry of the eudialyte group.Canadian Mineralogist, 37, 865891.Google Scholar
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R. and Pekov, I.V. (2003) The nomenclature of eudialyte-group minerals. Canadian Mineralogist, 41, 785794.CrossRefGoogle Scholar
Kabalov, Y.K., Sokolova, E.V., Pautov, L.A. and Schneider, J. (1998) Crystal structure of a new mineral turkestanite: A calcium analogoue of steacyite. Crystallography Reports, 43, 584588.Google Scholar
Karup-Møller, S. and Rose-Hansen, J. (2013) New data on eudialyte decomposition minerals from kakortokites and associated pegmatites of the Ilímaussaq complex, South Greenland. Bulletin of the Geological Society of Denmark, 61, 4770.CrossRefGoogle Scholar
Karup-Møller, S., Rose-Hansen, J. and Sørensen, H. (2010) Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland. Bulletin of the Geological Society of Denmark, 58, 7588.CrossRefGoogle Scholar
Kempe, U., Möckel, R., Graupner, T., Kynicky, J. and Dombon, E. (2015) The genesis of Zr–Nb–REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered. Ore Geology Reviews, 64, 602625.CrossRefGoogle Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford, UK.Google Scholar
Khomyakov, A.P., Dusmatov, V.D., Ferraris, G., Gula, A., Ivaldi, G. and Nechelyustov, G.N. (2003) Zirsilite-(Се) (Na,□)12(Ce,Na)3Ca6Mn3Zr3Nb(Si25O73)(OH)3(CO)3•H2О and carbolcentbrooksite (Na,□)12(Na,Ce)3Ca6Mn3Zr3Nb(Si25O73)(OH)3(CO3)•H2О – two new eudialyte group minerals from Dara-i-Pioz alkaline massif, Tajikistan. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva, 132, 4051.Google Scholar
Kogarko, L.N. (1974) Role of volatiles. Pp. 474487 in: The Alkaline Rocks (Sørensen, H., editor). John Wiley and Sons, UK.Google Scholar
Kynicky, J., Chakhmouradian, A.R., Xu, C., Krmicek, L. and Galiova, M. (2011) Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. Canadian Mineralogist, 49, 947965.CrossRefGoogle Scholar
Lacroix, A. (1915) Sur un type nouveau de roche granitique alcaline, renfermant une eucolite. Comptes rendus hebdomadaires de l'Académie des sciences, 253258.Google Scholar
Lacroix, A. (1923) Minéralogie de Madagascar, Tome III, lithologie, appendice, index géographique. Société d’éditions Geographiques, Maritimes et Coloniales, Ancienne Maison Challamel, Paris.Google Scholar
Locock, A.J. (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 111.CrossRefGoogle Scholar
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P.A., Schmid, R., Sørensen, H. and Woolley, A.R. (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, UK.CrossRefGoogle Scholar
Mariano, A.N. and Mariano, A.J. (2014) Cathodoluminescence as a tool in mineral exploration. Pp 97126 in: Cathodoluminescence and its Application to Geoscience. MAC, Short Course 45. Mineralogical Association of Canada, Québec, Canada.Google Scholar
Markl, G., Marks, M. and Frost, B.R. (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. Journal of Petrology, 51, 18311847.CrossRefGoogle Scholar
Marks, M., Hettmann, K., Schilling, J., Frost, B.R. and Markl, G. (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52, 439455.CrossRefGoogle Scholar
Marks, M., Lindhuber, M., Ratschbacher, B., Giehl, C., Nowak, M. and Markl, G. (2015) Eudialyte-Group Minerals as Monitors of Magmatic and Hydrothermal Processes in Peralkaline Rocks. Goldschmidt Abstracts. Available at https://goldschmidtabstracts.info/abstracts/abstractView?id=2015001134Google Scholar
McDonough, W.F. and Sun, S.S. (1995) The composition of the earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
McLemore, V.T. (2015) Rare Earth Elements (REE) Deposits in New Mexico: Update. New Mexico Geology, 37, 5969.CrossRefGoogle Scholar
Metrich, N. and Rutherford, M.J. (1992) Experimental study of chlorine behavior in hydrous silicic melts. Geochimica et Cosmochimica Acta, 56, 607616.CrossRefGoogle Scholar
Mitchell, R.H. and Liferovich, R.P. (2006) Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos, 91, 352372.CrossRefGoogle Scholar
Nockolds, S.R. (1950) On the occurrence of neptunite and eudialyte in quartz-bearing syenites from Barnavave, Carlingford, Ireland. Mineralogical Magazine, 29, 2733.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C. and Kristiansen, R. (2014) Ferri-fluoro-leakeite: a second occurrence at Bratthagen (Norway), with new data on Zn partitioning and the oxo component in Na amphiboles. Mineralogical Magazine, 78, 861869.CrossRefGoogle Scholar
Oppenheimer, C., Fischer, T.P. and Scaillet, B. (2014) 4.4 – Volcanic Degassing: Process and Impact. in: Treatise Geochemistry (Second Edition) (Holland, H.D. and Turekian, K., editors). Elsevier.Google Scholar
Pautov, L.A., Agakhanov, A.A., Sokolova, Y.V. and Kabalov, Y.K. (1997) Turkestanite Th(Ca,Na)2(K1-xx) Si8O20.nH2O – a new mineral with doubled fourfold silicon-oxygen rings. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 126, 4555.Google Scholar
Pfaff, K., Wenzel, T., Schilling, J., Marks, M. and Markl, G. (2010) A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrbuch für Mineralogie - Abhandlungen, 187, 6981.CrossRefGoogle Scholar
Putnis, A. (2009) Mineral replacement reactions. Pp. 87124 in: Thermodynamics and Kinetics of Water-Rock Interaction (Oelkers, E.H. and Schott, J., editors). Reviews in Mineralogy & Geochemistry, Vol. 70. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Ratschbacher, B.C., Marks, M.A.W., Bons, P.D., Wenzel, T. and Markl, G. (2015) Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland. Lithos, 231, 6276.CrossRefGoogle Scholar
Roelofsen, J.N. and Veblen, D.R. (1999) Relationships among zirconosilicates: examination by cathodoluminescence and transmission electron microscopy. Mineralogy and Petrology, 67, 7184.CrossRefGoogle Scholar
Sabine, P.A. (1957) The geology of Rockall, North Atlantic. Bulletin of the Geological Survey of Great Britain, 13, 156178.Google Scholar
Salvi, S. and Williams-Jones, A.E. (1990) The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at strange lake, Quebec Labrador – evidence from fluid inclusions. Geochimica Et Cosmochimica Acta, 54, 24032418.CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E. (1995) Zirconosilicate phase-relations in the Strange Lake (Lac-Brisson) pluton, Quebec-Labrador, Canada. American Mineralogist, 80, 10311040.CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E. (1996) The role of hydrothermal processes in concentrating high-field-strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60, 19171932.CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E. (2006) Alteration, HFSE mineralization and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos, 91, 1934.CrossRefGoogle Scholar
Salvi, S., Fontan, F., Monchoux, P., Williams-Jones, A.E. and Moine, B. (2000) Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght complex (Morocco). Economic Geology, 95, 559576.Google Scholar
Saucier, G., Noreau, C., Casgrain, P., Coté, P., Larochelle, E., Bilodeau, M., Al Hayden, P., Poirier, E., Garon, M., Bertrand, V., Kissiova, M., Mailloux, M., Rougier, M., Camus, Y. and Gagnon, G. (2013) NI 43-101 report – Feasibility Study for Kipawa Project. Matamec Explorations Inc, Quebec, Canada.Google Scholar
Schilling, J., Marks, M., Wenzel, T. and Markl, G. (2009) Reconstruction of magmatic to subsolidus processes in an agpaïtic system using eudialyte textures and composition: a case study from Tamazeght, Morocco. Canadian Mineralogist, 47, 351365.CrossRefGoogle Scholar
Schilling, J., Wu, F.Y., McCammon, C., Wenzel, T., Marks, M., Pfaff, K., Jacob, D.E. and Markl, G. (2011) The compositional variability of eudialyte-group minerals. Mineralogical Magazine, 75, 87115.CrossRefGoogle Scholar
Schmitt, A.K., Trumbull, R.B., Dulski, P. and Emmermann, R. (2002) Zr-Nb-REE mineralization in peralkaline granites from the Amis Complex, Brandberg (Namibia): Evidence for magmatic pre-enrichment from melt inclusions. Economic Geology and the Bulletin of the Society of Economic Geologists, 97, 399413.CrossRefGoogle Scholar
Sheard, E.R., Williams-Jones, A.E., Heiligmann, M., Pederson, C. and Trueman, D.L. (2012) Controls on the concentration of zirconium, niobium, and the rare earth-elements in the Thor Lake Rare Metal Deposit, Northwest Territories, Canada. Economic Geology, 107, 81104.CrossRefGoogle Scholar
Sherer, R.L. (1990) Pajarito yttrium-zirconium deposit, Otero County, New Mexico. New Mexico Geology, 12, 21.CrossRefGoogle Scholar
Signorelli, S. and Carroll, M. (2000) Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochimica et Cosmochimica Acta, 64, 28512862.CrossRefGoogle Scholar
Signorelli, S. and Carroll, M. (2002) Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contributions to Mineralogy and Petrology, 143, 209218.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. V. Titanium silicates: the crystal chemistry of nacareniobsite-(Ce). Canadian Mineralogist, 46, 13331342.CrossRefGoogle Scholar
Sørensen, H. (1992) Agpaitic nepheline syenites – a potential source of rare elements. Applied Geochemistry, 7, 417427.CrossRefGoogle Scholar
Sørensen, H. (1997) The agpaitic rocks – an overview. Mineralogical Magazine, 61, 485498.CrossRefGoogle Scholar
Vasyukova, O., Williams-Jones, A.E. and Blamey, N.J.F. (2016) Fluid evolution in the Strange Lake granitic pluton, Canada: Implications for HFSE mobilisation. Chemical Geology, 444, 83100.CrossRefGoogle Scholar
Vilalva, F.C.J. and Vlach, S.R.F. (2010) Major- and trace-element composition of REE-rich turkestanite from peralkaline granites of the Morro Redondo Complex, Graciosa Province, south Brazil. Mineralogical Magazine, 74, 645658.CrossRefGoogle Scholar
Vilalva, F.C.J., Vlach, S.R.F. and Simonetti, A. (2013) Nacaraniobsite-(Ce) and britholite-(Ce) in peralkaline granites from the Morro Redondo complex, Graciosa province, southern brazil: occurence and compositional data. Canadian Mineralogist, 51, 313332.CrossRefGoogle Scholar
Webster, J. (1992 a) Fluid-melt interactions involving Cl-rich granites: Experimental study from 2 to 8 kbar. Geochimica et Cosmochimica Acta, 56, 659678.CrossRefGoogle Scholar
Webster, J.D. (1992 b) Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2 kbar and 800 °C. Geochimica et Cosmochimica Acta, 56, 679687.CrossRefGoogle Scholar
Webster, J.D. (1997) Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochimica et Cosmochimica Acta, 61, 10171029.CrossRefGoogle Scholar
Supplementary material: File

Estrade et al. supplementary material

Supplementary material

Download Estrade et al. supplementary material(File)
File 39.3 KB