Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T06:06:56.508Z Has data issue: false hasContentIssue false

Crystal-chemistry and short-range order of fluoro-edenite and fluoro-pargasite: a combined X-ray diffraction and FTIR spectroscopic approach

Published online by Cambridge University Press:  05 July 2018

G. Della Ventura*
Affiliation:
Dipartimento di Scienze, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Rome, Italy INFN, Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati, Rome, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Rome, Italy INFN, Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati, Rome, Italy
F. Cámara
Affiliation:
Dipartimento di Scienze della Terra, via Valperga Caluso 35, I-10125 Turin, Italy CrisDi, Interdepartmental Centre for Crystallography, Via P. Giuria 5, 10125, Turin, Italy
R. Oberti
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, UOS Pavia, via Ferrata 1, I-27100 Pavia, Italy

Abstract

This study addresses the crystal chemistry of a set of five samples of F-rich amphiboles from the Franklin marble (USA), using a combination of microchemical (Electron microprobe analysis (EMPA)), single-crystal refinement (SREF) and Fourier transform infrared (FTIR) spectroscopy methods. The EMPA data show that three samples fall into the compositional field of fluoro-edenite (Hawthorne et al., 2012), whereas two samples are enriched in high-charged C cations and – although very close to the CR3+ boundary – must be classified as fluoro-pargasite. Magnesium is by far the dominant C cation, Ca is the dominant B cation (with BNa in the range 0.00−0.05 a.p.f.u., atoms per formula unit) and Na is the dominant A cation, with A☐ (vacancy) in the range 0.07−0.21 a.p.f.u.; WF is in the range 1.18−1.46 a.p.f.u. SREF data show that: TAl is completely ordered at the T(1) site; the M(1) site is occupied only by divalent cations (Mg and Fe2+); CAl is disordered between the M(2) and M(3) sites; ANa is ordered at the A(m) site, as expected in F-rich compositions. The FTIR spectra show a triplet of intense and sharp components at ~3690, 3675 and 3660 cm−1, which are assigned to the amphibole and the systematic presence of two very broad absorptions at 3560 and 3430 cm−1. These latter are assigned, on the basis of polarized measurements and FPA (focal plane array) imaging, to chlorite-type inclusions within the amphibole matrix. Up to eight components can be fitted to the spectra; band assignment based on previous literature on similar compositions shows that CAl is disordered over the M(2) and M(3) sites, thus supporting the SREF conclusions based on the <M−O> bond distance analysis. The measured frequencies of all components are typical of O−H groups pointing towards Si−O(7)−Al tetrahedral linkages, thus allowing characterization of the SRO (shortrange- order) of TAl in the double chain. Accordingly, the spectra show that in the fluoro-edenite/ pargasite structure, the T cations, Si and Al, are ordered in such a way that Si−O(7)−Si linkages regularly alternate with Si−O(7)−Al linkages along the double chain.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 1–30 in: Structure and bonding in crystals (M. O’Keeffe and A. Navrotsky, editors), vol. 2, Academic Press, New York, USA.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: the Bond-valence Model. Oxford University Press, Oxford, UK, 278 pp.Google Scholar
Boschmann, K.F., Burns, P.C., Hawthorne, F.C., Raudsepp, M. and Turnock, A.C. (1994) A-site disorder in synthetic fuor-edenite, a crystal-structure study. The Canadian Mineralogist, 32, 2130.Google Scholar
Cámara, F. (1995) Estudio cristalquímico de minerales metamórficos en rocas básicas del Complejo Nevado-Filábride (Cordilleras Béticas). PhD thesis, University of Granada, 484 pp. [In Spanish].Google Scholar
Clark, A.M. (1993) Hey’s Mineral Index: Mineral Species, Varieties and Synonyms. Chapman & Hall, London.Google Scholar
Della Ventura, G. (1992) Recent developments in the synthesis and characterization of amphiboles. Synthesis and crystal-chemistry of richterites. Trends in Mineralogy, 1, 153192.Google Scholar
Della Ventura, G. and Robert, J.-L. (1990) Synthesis, XRD and FT-IR studies of strontium richterites. European Journal of Mineralogy, 2, 171175.CrossRefGoogle Scholar
Della Ventura, G., Robert, J.L. and Hawthorne, F.C. (1996) Infrared spectroscopy of synthetic (Ni,Mg,Co)-potassium-richterite. Pp. 55–63 in Mineral Spectroscopy: a Tribute to Roger G. Burns (M.D. Dyar, C. McCammon and M.W. Schaefer, editors). The Geochemical Society Special Publication, 5. St Louis, Missouri, USA.Google Scholar
Della Ventura, G., Hawthorne, F.C., Robert, J.-L., Delbove, F., Welch, M.D. and Raudsepp, M. (1999) Short-range order of cations in synthetic amphiboles along the richterite-pargasite join. European Journal of Mineralogy, 11, 7994.CrossRefGoogle Scholar
Della Ventura, G., Robert, J.-L., Sergent, J., Hawthorne, F.C. and Delbove, F. (2001) Constraints on F vs. OH incorporation in synthetic [6]Al-bearing monoclinic amphiboles. European Journal of Mineralogy, 13, 841847.CrossRefGoogle Scholar
Della Ventura, G., Hawthorne, F.C., Robert, J.-L. and Iezzi, G. (2003) Synthesis and infrared spectroscopy of amphiboles along the tremolite-pargasite join. European Journal of Mineralogy, 15, 341347.CrossRefGoogle Scholar
Farmer, V.C. (editor) (1974) The Infrared Spectra of Minerals. Mineralogical Society Monograph 4. The Mineralogical Society, London.Google Scholar
Gianfagna, A. and Oberti, R. (2001) Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): crystal chemistry of a new amphibole end-member. American Mineralogist, 86, 14891493.CrossRefGoogle Scholar
Gilbert, M.C., Helz, R.T., Popp, R.K. and Spear, F.S. (1982) Experimental studies on amphibole stability. Pp. 229–353 in: Amphiboles: Petrology and Experimental Phase Relations (D.R. Veblen and P.H Ribbe, editors). Reviews in Mineralogy, 9B. Mineralogical Society of America, Washington DC, USA.CrossRefGoogle Scholar
Gottschalk, M. and Andrut, M. (1998) Structural and chemical characterization of synthetic (Na,K)- richterite solid solution by EMP, HRTEM, XRD and OH-valence spectroscopy. Physics and Chemistry of Minerals, 25, 101111.CrossRefGoogle Scholar
Gottschalk, M., Andrut, M. and Melzer, S. (1999) The determination of the cummingtonite content of synthetic tremolite. European Journal of Mineralogy, 11, 967982.CrossRefGoogle Scholar
Graham, C.M. and Navrotsky, A. (1986) Thermochemistry of the tremolite-edenite amphiboles using fluorine anlogues and applications to amphibole-plagioclase-quartz equilibria. Contributions to Mineralogy and Petrology, 93, 1832.CrossRefGoogle Scholar
Hammarstrom, J.M. and Zen, E-an (1986) Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71, 12971313.Google Scholar
Hawthorne, F.C., Oberti, R. and Sardone, N. (1996a) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order. The Canadian Mineralogist, 34, 577593.Google Scholar
Hawthorne, F.C., Della Ventura, G. and Robert, J.L. (1996b) Short-range order and long-range order in amphiboles: a model for the interpretation of infrared spectra in the principal OH-stretching region. Pp. 49–54 in: Mineral Spectroscopy: a Tribute to Roger G. Burns (M.D. Dyar, C. McCammon and M.W. Schaefer, editors). The Geochemical Society Special Publication, 5. St Louis, Missouri, USA.Google Scholar
Hawthorne, F.C. (1997) Short-range order in amphiboles: a bond-valence approach. The Canadian Mineralogist, 35, 201216.Google Scholar
Hawthorne, F.C., Della Ventura, G., Robert, J.-L., Welch, M.D., Raudsepp, M. and Jenkins, D.M. (1997) A Rietveld and infrared study of synthetic amphiboles along the potassium-richterite-tremolite join. American Mineralogist, 82, 708716.CrossRefGoogle Scholar
Hawthorne, F.C., Welch, M.D., Della Ventura, G., Liu, S., Robert, J.-L. and Jenkins, D.M. (2000) Shortrange order in synthetic aluminous tremolites: an infrared and triple quantum MAS NMR study. American Mineralogist, 85, 17161724.CrossRefGoogle Scholar
Hawthorne, F.C. and Della Ventura, G. (2007) Shortrange order in amphiboles Pp. 173–222 in: Amphiboles: Crystal-chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Shumacher, J.C. and Welch, M.D. (2012) IMA report. Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B. (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72, 231239.Google Scholar
Kohn, J.A. and Comeforo, J.E. (1955) Synthetic asbestos investigations. II. X-ray and other data on synthetic fluor-richterite, -edenite and boron-edenite. American Mineralogist, 40, 410421.Google Scholar
Koch-Müller, M., Matsyuk, S.S. and Wirth, R. (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. American Mineralogist, 89, 921931.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American Mineralogist, 82, 11111115.CrossRefGoogle Scholar
Libowitzky, E. and Beran, A. (2004) IR spectroscopy as a tool for the characterization of hydrous species in minerals. Pp. 227–280 in: Spectroscopic Methods in Mineralogy (A. Beran and E. Libowitzky, editors). EMU Notes in Mineralogy, 6. European Mineralogical Union, Eötvös University Press, Budapest.Google Scholar
Löwenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminosilicates. American Mineralogist, 39, 9296.Google Scholar
Na, K.C., McCauley, M.L., Crisp, J.A. and Ernst, W.G. (1986) Phase relations to 3 kbar in the system edenite + H2O and edenite + excess quartz + H2O. Lithos, 19, 153163.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Ungaretti, L. and Cannillo, E. (1995a) [6]Al disorder in amphiboles from mantle peridotites. The Canadian Mineralogist, 33, 867878.Google Scholar
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. and Memmi, I. (1995b) Temperature-dependent Al order-disorder in the tetrahedral double-chain of C2/m amphiboles. European Journal of Mineralogy, 7, 10491063.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C. and Raudsepp, M. (1997) The behaviour of Mn in amphiboles: Mn in synthetic fluoro-edenite and synthetic fluoropargasite. European Journal of Mineralogy, 9, 115122.CrossRefGoogle Scholar
Oberti, R., Cámara, F. Della Ventura, G., Iezzi, G. and Benimoff, A.I. (2006) Parvo-mangano-edenite and parvo-manganotremolite, two new Group 5 monoclinic amphiboles from Fowler, New York and comments on the solid solution between Ca and Mn2+ at the M(4) site. American Mineralogist, 91, 526532.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125–171 in: Amphiboles: Crystal-chemistry, Occurrence and Health Issues (F.C. Hawthorne, R.Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Palache, C. (1935) The minerals of Franklin and Sterling Hill, Sussex County, New Jersey. United States Geological Survey Professional Paper 180, 135 pp.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ F(rZ) procedure for improved quantitative micro-analysis. Microbeam Analysis, 1985, 104160.Google Scholar
Raudsepp, M., Turnock, A.C., Hawthorne, F.C., Sherriff, B.L. and Hartman, J.S. (1987): Characterization of synthetic pargasitic amphiboles [NaCa2Mg4M3+Si6Al2O22(OH,F)2; M3+ = Al, Cr, Ga, Sc, In] by infrared spectroscopy, Rietveld structure refinement and 27Al, 29Si and 19F MAS NMR spectroscopy. American Mineralogist, 72, 580593.Google Scholar
Raudsepp, M., Turnock, A.C. and Hawthorne, F.C. (1991) Amphibole synthesis at low pressure: what grows and what doesn’t. European Journal of Mineralogy, 3, 9831004.CrossRefGoogle Scholar
Ridolfi, F., Renzulli, A. and Puerini, M. (2010) Stability and chemical equilibrium of amphibole in calcalkaline magmas: an overview, new thermobarometric formulations and application to subductionrelated volcanoes. Contributions to Mineralogy and Petrology, 160, 4566.CrossRefGoogle Scholar
Robert, J.-L., Della Ventura, G. and Thauvin, J.-L. (1989) The infrared OH-stretching region of synthetic richterites in the system Na2O–K2O–CaO–MgO–SiO2–H2O–HF. European Journal of Mineralogy, 1, 203211.CrossRefGoogle Scholar
Robert, J.-L., Della Ventura, G. and Hawthorne, F.C. (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles. American Mineralogist, 84, 8691.CrossRefGoogle Scholar
Robert, J.-L., Della Ventura, G., Welch, M. and Hawthorne, F.C. (2000) OH-F substitution in synthetic pargasite at 1.5 kbar, 850°C. American Mineralogist, 85, 926931.CrossRefGoogle Scholar
Semet, M.P. (1973) A crystal-chemical study of synthetic magnesiohastingsite. American Mineralogist, 58, 480494.Google Scholar
Skogby, H. and Rossman, G.R. (1991) The intensity of amphibole OH bands in the infrared absorption spectrum. Physics and Chemistry of Minerals, 18, 6468.CrossRefGoogle Scholar
Soto, J.I. (1991) Estructura y evolución metamórfica del Complejo Nevado-Filábride en la terminación oriental de la Sierra de los Filabres (Cordilleras Béticas). PhD Thesis, University of Granada, 273 pp.Google Scholar
Spear, F.S. (1981) An experimental study of horneblende stability and compositional variability in amphibolite. American Journal of Science, 281, 697734.CrossRefGoogle Scholar
Strens, R.S.J. (1974) The common chain, ribbon and ring silicates. Pp 305–330 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society Monograph, 4. The Mineralogical Society, London.Google Scholar
Welch, M.D., Kolodziejski, W. and Klinowski, J. (1994) A multinuclear NMR study of synthetic pargasite. American Mineralogist, 79, 261268.Google Scholar
Welch, M.D., Liu, S. and Klinowski, J. (1998) 29Si MAS NMR systematics of calcic and sodic-calcic amphiboles. American Mineralogist, 83, 8596.CrossRefGoogle Scholar
Supplementary material: PDF

Della Ventura et al. supplementary material

Table 5. Atomic coordinates and displacement factors

Download Della Ventura et al. supplementary material(PDF)
PDF 121.1 KB