Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T22:22:47.798Z Has data issue: false hasContentIssue false

The crystal structures, solid solutions and infrared spectra of copiapite-group minerals

Published online by Cambridge University Press:  05 July 2018

J. Majzlan*
Affiliation:
Institute of Mineralogy and Geochemistry, Albert-Ludwig University of Freiburg, Albertstraße 23b, D-79104 Freiburg, Germany
R. Michallik
Affiliation:
Institute of Mineralogy and Geochemistry, Albert-Ludwig University of Freiburg, Albertstraße 23b, D-79104 Freiburg, Germany

Abstract

Copiapite is a mineral of iron- and sulphate-rich acidic environments and has a general formula AFe3+4 (SO4)6(OH)2(H2O)20, where A = Fe2+, 2/3Fe3+, 2/3Al3+, Mg, Zn. The structure is built by infinite tetrahedral-octahedral chains and isolated octahedrally coordinated A sites. Our synthetic and natural copiapite samples can be divided into two large groups based on the orientation of the structural fragments. One group comprises copiapite phases where A = Al3+, Fe2+ or Fe3+ and we designate it as the structural type AL. The other group consists of copiapite with A = Mg2+, Zn2+ or Ni2+ and this is the structural type MG. The solid-solution series between Fe3+ and Al3+ copiapite is continuous. The series between Mg2+-Al3+, Mg2+-Fe3+ and Mg2+-Al3+-Fe3+ copiapite are not continuous; the samples with intermediate compositions contain two copiapite phases, one of the type AL and one of the type MG. The series between Mg2+ and Zn2+ copiapite is continuous only at 25°C. At 75°C, the Zn-rich portion of this systemcrystallizes a copiapite-like phase whose structure may be a superstructure of copiapite. The series between Al-Fe2+ and Mg-Fe2+ copiapite are not continuous and show complex behaviour of the intermediate compositions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atencio, D., Carvalho, F.M.S. and Hypolito, R. (1996) Synthesis and X–ray powder diffraction data for Mg–, Al– and Ni– end–members of the copiapite group. Anais da Associacao Brasileira de Quimica, 45, 66–72.Google Scholar
Bayliss, P. and Atencio, D. (1985) X–ray powder diffraction data and cell parameters for copiapitegroup minerals. The Canadian Mineralogist, 23, 53–56.Google Scholar
Broemme, B. and Poellmann, H. (2007) Synthesis, crystal structure and application of compounds with copiapite and voltaite structure. Geochimica et Cosmochimica Acta, 71, Special Supplement 15S, A123.Google Scholar
Fanfani, L., Nunzi, A., Zanazzi, P.F. and Zanzari, A.R. (1973) The copiapite problem: the crystal structure of a ferrian copiapite. American Mineralogist, 58, 314–322.Google Scholar
Friedlander, L.R., Tosca, N.J. and Arvidson, R.E. (2007) Preliminary experiments in the systematic investigations of the spectroscopic properties of synthetic copiapite group minerals. Lunar and Planetary Science Conference, XXXVIII, 2049.Google Scholar
Haidinger, W. (1845) Handbuch der bestimmenden Mineralogie. Braumüller & Seidel, Wien.Google Scholar
Jamieson, H.E., Robinson, C., Alpers, C.N., McCleskey, R.B., Nordstrom, D.K. and Peterson, R.C. (2005) Major and trace element composition of copiapitegroup minerals and coexisting water from the Richmond mine, Iron Mountain, California. Chemical Geology, 215, 387–405.CrossRefGoogle Scholar
Johansson, G. (1962) On the crystal structures of FeOHSO4 and In OHSO4 . Acta Chemica Scandinavica, 16, 1234–1244.CrossRefGoogle Scholar
Larson, A.C. and von Dreele, R.B. (1994) GSAS. General Structure Analysis System. LANSCE, MS–H805, Los Alamos, New Mexico.Google Scholar
Majzlan, J. and Kiefer, B. (2006) An X–ray– and neutron–diffraction study of synthetic ferricopiapite, Fe14/3(SO4)6(OD, OH)2(D2O, H2O)20, and ab initio calculations on the structure of magnesiocopiapite, MgFe4(SO4)6(OH)2(H2O)20 . The Canadian Mineralogist, 44, 1227–1237.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley, New York.Google Scholar
Posnjak, E. and Merwin, H.E. (1922) The system, Fe2O3−SO3−H2O. Journal of the American Chemical Society, 44, 1965–1994.Google Scholar
Quartieri, S., Triscari, M. and Viani, A. (2000) Crystal structure of the hydrated sulphate pickeringite (MgAl2(SO4)4·22H2O): X–ray powder diffraction study. European Journal of Mineralogy, 12, 1131–1138.CrossRefGoogle Scholar
Rammelsberg, C.F. (1860) Handbuch der Mineralchemie. Verlag von WilhelmEn gelman, Leipzig.Google Scholar
Robinson, P.D. and Fang, J.H. (1971) Crystal structures and mineral chemistry of hydrated ferric sulphates: II. The crystal structure of paracoquimbite. American Mineralogist, 56, 1567–1571.Google Scholar
Rose, H. (1833) Ueber einige in Südamerika vorkommende Eisenoxydsalze. Annalen der Physik, 27, 309–319.Google Scholar
Ryskin, Ya.I. (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium. Pp. 137–181 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4. Mineralogical Society, London.Google Scholar
Scharizer, R. (1913) Beiträge zur Kenntnis der chemischen Constitution und der Genese der natürlichen Ferrisulphate VIII. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 52, 372–398.Google Scholar
Süsse, P. (1972) Crystal structure and hydrogen bonding of copiapite. Zeitschrift für Kristallographie, 135, 34–55.CrossRefGoogle Scholar
Visser, J.W. (1969) A fully automatic program for finding the unit cell frompowder data. Journal of Applied Crystallography, 2, 89–95.CrossRefGoogle Scholar
Walter–Levy, L. and Quemeneur, E. (1963) Sur la thermolyse du sulphate ferrique basique 6Fe2(SO4)3, Fe2O3.nH2O. Comptes Rendus Academy of Science Paris, 257, 3410–3413.Google Scholar
Supplementary material: PDF

Majzlan and Michallik supplementary material

Supplementary data

Download Majzlan and Michallik supplementary material(PDF)
PDF 54.7 KB