Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T21:30:48.106Z Has data issue: false hasContentIssue false

The crystal structure of Na4(UO2)(CO3)3 and its relationship to schröckingerite

Published online by Cambridge University Press:  05 July 2018

Yaping Li
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick, Notre Dame, Indiana 46556-0767, USA
S. V. Krivovichev
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick, Notre Dame, Indiana 46556-0767, USA
P. C. Burns*
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick, Notre Dame, Indiana 46556-0767, USA
*

Abstract

Crystals of the compound Na4(UO2)(CO3)3 have been synthesized and the structure has been solved. It is trigonal with a= 9.3417(6), c = 12.824(1) Å, V = 969.2(1) Å3, space group Pc1 and Z = 4. The structure was refined on the basis of F2 (wR2 = 4.2%) for all unique data collected using Mo-Kα X-radiation and a CCD-based detector. The final R1 was 2.0%, calculated for 534 unique observed (Fo ≥ 4σF) reflections, and the goodness-of-fit (S) was 0.91. The structure contains a uranyl tricarbonate cluster composed of a uranyl hexagonal bipyramid that shares three equatorial edges with CO3 triangles. The uranyl tricarbonate clusters are connected through NaO6 and NaO5 polyhedra, forming a heteropolyhedral framework structure. This compound may be related to a uranyl carbonate phase with the same composition which has been reported as an alteration phase on the surface of Chernobyl ‘lava’, and as a mineral in the Jachymov ore district, Czech Republic.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N.E. and O'Keeffe, M.O. (1991) Bond-valence parameters for solids. Acta Crystallogr., B47, 192–7.CrossRefGoogle Scholar
Burakov, B.E., Strykanova, E.E. and Anderson, E.B. (1999) Secondary uranium minerals on the surface of Chernobyl ‘lava’. Mat. Res. Soc. Symp. Proc., 465, 1309–11.CrossRefGoogle Scholar
Burns, P.C. (1999) Crystal chemistry of uranium. Pp. 23–90 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Finch, R.J., editors). Reviews in Mineralogy, 38. Mineralogical society of America, Washington, D.C. CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Canad. Mineral., 35, 1551–70.Google Scholar
Burns, P.C., Miller, M.L. and Ewing, R.C. (1996) U6+ minerals and inorganic phases: a comparison and hierarchy of crystal structures. Canad. Mineral., 34, 845–80.Google Scholar
Clark, D.L., Hobart, D.E. and Neu, M.P. (1995) Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev., 95, 25-48.CrossRefGoogle Scholar
Douglass, M. (1956) Tetrasodium uranyl tricarbonate, Na4UO2(CO3)3 . Anal. Chem., 28, 1635.CrossRefGoogle Scholar
Finch, R.J., Cooper, M.A., Hawthorne, F.C. and Ewing, R.C. (1999) Refinement of the crystal structure of rutherfordine. Canad. Mineral., 37, 929–38.Google Scholar
Ginderow, D. and Cesbron, F. (1985) Structure de la roubaultite, Cu2(UO2)3(CO3)2O2(OH)24(H2O). Acta Crystallogr., C41, 654–7.Google Scholar
Grice, J.D. and Ferraris, G. (2000) New minerals approved in 1999 by the commission on new minerals and mineral names, International Mineralogical Association. Canad Mineral., 38, 245–50.CrossRefGoogle Scholar
Li, Y., Burns, P.C. and Gault, R.A. (2000) A new rare-earth-element uranyl carbonate sheet in the structure of bijvoetite-(Y). Canad. Mineral., 38, 153–62.CrossRefGoogle Scholar
Mandarino, J.A. (1999) Fleischer's Glossary of Mineral Species 1999. The Mineralogical Record Inc., Tucson, AZ, USA.Google Scholar
Mayer, H. and Mereiter, K. (1986) Synthetic bayleyite, Mg2[(UO2)(CO3)3]·18(H2O): thermochemistry, crystallography and crystal structure. Tsch. Miner. Petr. Mitt., 35, 133–46.CrossRefGoogle Scholar
Mereiter, K. (1982) The crystal structure of liebigite, Ca2UO2(CO3)3 ˜ 11H2O. Tsch. Miner. Petr. Mitt., 30, 277–88.CrossRefGoogle Scholar
Mereiter, K. (1986 a) Crystal structure and crystallographic properties of a schröckingerite from Joachimsthal. Tsch. Miner. Petr. Mitt., 35, 1-18.CrossRefGoogle Scholar
Mereiter, K. (1986 b) Synthetic swartzite, CaMg[(UO2)(CO3)3]·12H2O, and its strontium analogue, SrMg[(UO2)(CO3)3]·12H2O: crystallography and crystal structures. Neues Jahrb. Mineral., Mh., 481–92.Google Scholar
Mereiter, K. (1986 c) Neue Kristallographische Daten ueber das uranmineral andersonit. Anz. Oesterr Akad. Wiss. Math-Naturwiss, K13, 39-41.Google Scholar
Ondrus, P., Veselovsky, F., Skala, R., Cisarova, I., Hlousek, J., Fryda, J., Vavrin, I., Cejka, J. and Gabasova, A. (1997) New naturally occurring phases of secondary origin from Jachymov (Joachimsthal). J. Czech Geol. Soc., 42, 77-108.Google Scholar