Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:40:46.282Z Has data issue: false hasContentIssue false

Crystal structure of Ba8[Al3O10][AlO4], a novel mixed-anion Ba aluminate related to kilchoanite

Published online by Cambridge University Press:  05 July 2018

V. Kahlenberg*
Affiliation:
Fachbereich Geowissenschaften (Kristallographie), Universität Bremen, Klagenfurter Str., D-28359 Bremen, Germany
*

Abstract

Crystal growth experiments in the system BaO–Al2O3 yielded single crystals of a new Ba oxo-aluminate with composition Ba4Al2O7. The title compound is orthorhombic, with cell parameters a = 11.3126(5), b = 11.7045(9), c = 27.1850(14) Å, space group Cmca. The structure was solved by direct methods followed by difference Fourier synthesis from X-ray single crystal diffraction data (R1 = 0.048 for 1213 independent observed reflections and 135 parameters). The main building units of tetrabarium aluminate are Al3O10 trimers and isolated AlO4 tetrahedra. Seven crystallographically different Ba sites crosslink between the tetrahedral groups and are co-ordinated by six to nine oxygen ligands. The structure is closely related to the mineral kilchoanite (Ca6[SiO4][Si3O10]) and the first representative of an unbranched oligo-aluminate with triple tetrahedra.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G. and Camalli, M. (1992) SIR92 – a program for automatic solution of structures by direct methods. J. Appl. Crystallogr., 27, 435.Google Scholar
Appendino, P. (1972) Équilibres a l’état solide dans le système oxyde de strontium-oxyde de bariumalumine. Rev. Int. Hautes Tempér. et Réfract., 9, 297302.Google Scholar
Barker, M.G., Gadd, P.G. and Begley, M.J. (1984) Identification and characterisation of three novel compounds in the sodium-aluminum-oxygen system. J. Chem. Soc. Dalton Trans., 1984, 1139–46.CrossRefGoogle Scholar
Berkel, F.P.F., van Zandberg, H.W., Verschoor, G.C., Ijdo, D.J.W. and (1984) The structure of barium aluminate, Ba0.75Al11O17.25 . Acta Crystallogr., C40, 1124–7.Google Scholar
Brandle, C.D. and Steinfink, H. (1969) The crystal structure of Eu4Al2O9 . Inorg. Chem., 8, 1320–4.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr., B41, 244–7.CrossRefGoogle Scholar
Chen, Q.G. and Davies, T.J. (1997) Sol-gel processing of refractory compounds in alumina-baria system. Brit. Ceram. Trans., 96, 170–4.Google Scholar
Christensen, A.N. and Hazell, R.G. (1991) A comparison of three sets of diffraction data for Al2Y4O9: X-ray synchrotron powder data, X-ray single crystal data from Ag K α radiation, and neutron single crystal data from 1.01 Åneutrons. Acta Chem. Scand., 45, 226–30.CrossRefGoogle Scholar
Davies, T.J., Al-Douri, W.A., Biedermann, M., Chen, Q.G. and Emblem, H.G. (1996) Refractory oxides containing barium. J. Mater. Sci. Lett., 15, 482–4.CrossRefGoogle Scholar
Davies, T.J., Al-Douri, W.A., Biedermann, M., Chen, Q.G. and Emblem, H.G. (1997) Aluminum-barium oxides as binders for refractory grain mixes. J. Mater. Sci. Lett., 16, 1673–4.CrossRefGoogle Scholar
Dowty, E. (2000) Atoms., Version 5.1, Shape Software, Kingsport, USA.Google Scholar
Griesfeller, F., Köhler, J. and Hoppe, R. (1983) Das erste Oligo-Oxo-Aluminat: Na14[Al4O13]. Z. Anorg. Allg. Chem., 507, 155–62.CrossRefGoogle Scholar
Hörkner, W. and Müller-Buschbaum, H. (1979) Zur Kristallstruktur von BaAl2O4 . Z. Anorg. Allg. Chem., 451, 40–4.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography., vol. IV. Kynoch, Birmingham, UK.Google Scholar
Kahlenberg, V. (2001) Crystal structure determination of tetrabarium-digalliumoxide, Ba4Ga2O7. Z. Anorg. Allg. Chem., (in press).3.0.CO;2-S>CrossRefGoogle Scholar
Kovba, L.M., Lykova, L.N., Antipov, E.V., Paromova, M.V. and Rozanova, O.N. (1987) Double oxides of barium and aluminum. Russ. J. Inorg. Chem., 32, 301–2.Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates., Springer-Verlag, Berlin.CrossRefGoogle Scholar
Lykova, L.N., Paromova, M.V., Kulikova, Z. Ya., Rozanova, O.N., Maslennikova, O. Yu. and Gruzdeva, V.V. (1991) Possible substitution of barium by calcium (stron-tium) in the aluminates Ba4Al2O7 and Ba7Al2O10 . Inorg. Mater., 27, 648–51.Google Scholar
Nuzeki, N. and Wachi, M. (1968) The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9 . Z. Kristallogr., 127, 173–87.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567–70.CrossRefGoogle ScholarPubMed
Röhr, C. and George, R. (1995) Das Submetallat Ba17Al3O7: die erste Verbindung einer neuen Klasse. Angew. Chem., 107, 2311–3.CrossRefGoogle Scholar
Sheldrick, G.M. (1993) SHELXL-93. A program for the refinement of crystal structures., Universität Göttingen, Germany.Google Scholar
Taylor, H.F.W. (1971) The crystal structure of kilchoanite, Ca6(SiO4)(Si3O10), with some comments on related phases. Mineral. Mag., 38, 2631.CrossRefGoogle Scholar
Walz, L., Heinau, M., Nick, B. and Curda, J. (1994) Die Kristallstrukturen der Erdalkalialuminate Ba3Al2O6 und Ba2.33Ca0.67Al2O6 (: Ba7Ca2Al6O18). J. Alloys Comp., 16, 105–12.CrossRefGoogle Scholar