Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T19:39:04.675Z Has data issue: false hasContentIssue false

Crystal structure and chemistry of natural kutinaite from Černý Důl, Krkonoše, Czech Republic

Published online by Cambridge University Press:  02 January 2018

Luca Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy CNR – Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy
Emil Makovicky
Affiliation:
Department of Geoscience and Resource Management, University of Copenhagen, Østervoldgade 10, 1350 Copenhagen, Denmark
*

Abstract

We have characterized the crystal structure of natural kutinaite, a rare mineral from the ores of Černý Důl, Czech Republic, by single-crystal X-ray diffraction and chemical analysis. We found that the structure of natural kutinaite is not identical to that of synthetic Cu14Ag6As7, previously reported to be cubic, space group Pm3m. Although topologically similar, the structure of natural kutinaite is indeed tetragonal, space group P4/mmm, with cell parameters: a = 11.789(2), c = 11.766(2) Å, V = 1635.5(4) Å3 and Z = 4. Electron microprobe analyses pointed to the (K,Tl)0.25Cu14Ag6As6.75 stoichiometry (Z = 4), or (K, Tl)Cu56Ag24As27 with Z = 16. The crystal structure of an untwinned crystal has been refined to R1 = 2.61%. It consists of clusters of eight edge-sharing tetrahedra of Cu, which alternate in a 3D chess-board manner with octahedral clusters of six Ag atoms. The latter are surrounded by triangularly coordinated copper in eight faces of a cuboctahedron. The last structure components are large cavities containing partly occupied (K,Tl) sites, coordinated by 18 Ag and As ligands. The structure is full of direct metal-metal contacts although As plays the role of anion, associating especially with copper.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balic Zunic, T, Makovicky, E., Karanovic, Lj., Poleti, D. and Graeser, S. (2006) The crystal structure of gabrielite, Tl2AgCu2As3S7, anew species of thallium sulfosalt from Lengenbach, Switzerland. The Canadian Mineralogist, 44, 141158.CrossRefGoogle Scholar
Belendorff, K. (1986) A paragenesis of rare minerals from Nieder-Beerbach, Odenwald, Germany: Lautite, kutinaite, paxite. Neues Jahrbuch fur Mineralogie, Monatshefte, 11, 511518.Google Scholar
Bindi, L., Nestola, F., Guastoni, A., Peruzzo, L., Ecker, M. and Carampin, R. (2012) Raberite, Tl5Ag4As6SbS15, a new Tl-bearing sulfosalt from Lengenbach quarry, Binn Valley, Switzerland: description and crystal structure. Mineralogical Magazine, 76, 11531163.CrossRefGoogle Scholar
Graeser, S., Berlepsch, P., Makovicky, E. and Balic-Zunic, T (2001) Sicherite, TlAg2(As,Sb)3S6-anew sulfosalt from Lengenbach (Binntal, Switzerland): Description and structure determination. American Mineralogist, 86, 10871093.CrossRefGoogle Scholar
Hak, I, Johan, Z. and Skinner, B.J. (1970) Kutinaite: a new copper-silver arsenide mineral from Cerny Dul, Czechoslovakia. American Mineralogist, 55, 10831087.Google Scholar
Harris, D.C. and Thorpe, R.I. (1985) Occurrence of copper arsenides in the East Arm area, Great Slave Lake, District of Mackenzie. Geological Survey of Canada, 85-1 A, 713716.Google Scholar
Ibers, J.A. and Hamilton, W.C. (Editors) (1974) International Tables for X-ray Crystallography, vol. IV Kynoch Press, Dordrecht, The Netherlands, 366 pp.Google Scholar
Karanovic, L., Poleti, D., Makovicky, E., Balic-Zunic, T andMakovicky, M. (2002) The crystal structure of synthetic kutinaite, Cu14Ag6As7 . The Canadian Mineralogist, 40, 14371449.CrossRefGoogle Scholar
Karanovic, L., Poleti, D., Balic-Zunic, T, Makovicky, E. and Grzetic, I. (2008) Two new examples of very short thallium-transition metal contacts: Tl3Ag3Sb2S6 and Tl3Ag3As2S6 . Journal of Alloys and Compounds, 457, 6674.CrossRefGoogle Scholar
Lutz, H.D., Jung, M. and Waschenbach, G. (1987) Kristallstrukturen des lollingits FeAs2 und des pyrits RuTe2 . Zeitschrift fur Anorganische und Allgemeine Chemie, 554, 8791.CrossRefGoogle Scholar
Lyman, PS. and Prewitt, C.T (1984) Room-and high-pressure crystal chemistry of CoAs and FeAs. Ada Crystallographica, B40, 1420.Google Scholar
Makovicky, E. (2006) Crystal structures of sulfides and other chalcogenides. Pp 7126 in: Sulfide Mineralogy and Geochemistry (Vaughan, D.J., editor). Reviews in Mineralogy & Geochemistry, 61. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Makovicky, E. and Skinner, B.J. (1979) Studies of the sulfosalts of copper VII. Crystal structures of the exsolution products Cu12 3Sb4S13 and Cu13 8Sb4S13 of unsubstituted synthetic tetrahedrite. The Canadian Mineralogist, 17, 619634.Google Scholar
Makovicky, M., Rose-Hansen, J. and Skinner, B.J. (1979) Phases and phase relations in the Cu-Ag-As system at 500 °C, 400 °C, and 350 °C. Neues Jahrbuch fur Mineralogie, Abhandlungen, 135, 221269.Google Scholar
Marumo, F. and Nowacki, W. (1967) The crystal structure of hatchite, PbTlAgAs2S5 . Zeitschrift fur Kristallographie, 125, 249265.CrossRefGoogle Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.Google Scholar
Picot, P. and Ruhlmann, F. (1978) Occurrence of high temperature copper arsenides in “granite des Ballons“ (Southern Vosges, France). Bulletin de Mineralogie, 101, 563569.CrossRefGoogle Scholar
Sal'kov, S.A. and Abulgazina, S.D. (1990) First discovery of kutinaite in the USSR. Vestnik Akademii Nauk Kazakhskoi SSR, 12, 81-82 [in Russian].Google Scholar
Shannon, R.D. (1981) Bond distances in sulfides and a preliminary table of sulfide crystal radii. Structure and Bonding in Crystals, 2, 5370.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Ada Crystallographica, A64, 112122.Google Scholar
Suh, I.-K., Ohta, H. and Waseda, Y. (1988) High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. Journal of Material Science, 23, 757760.CrossRefGoogle Scholar
Tarkian, M., Bock, W.D. and Neumann, M. (1983) Geology and mineralogy of the copper-nickel-cobalt-uranium ore deposits at Talmessi and Meskani, Central Iran. Tschermaks Mineralogische und Petrographische Mitteilungen, 32, 111133.CrossRefGoogle Scholar
Thompson, J.G., Rae, A.D., Withers, R.L., Welberry, T.R. and Willis, A.C. (1988) The crystal structure of nickel arsenide. Journal of Physics C: Solid State Physics, 21, 4007–015.CrossRefGoogle Scholar
von Schnering, H.G. and Hausler, K.G. (1976) Ag6Ge10P12, eine Verbindung mit Ag6-Cluster. Revue de Chimie Minerale, 13, 7181.Google Scholar
Supplementary material: File

Bindi Makovicky supplementary material

Table 6: structure factors

Download Bindi Makovicky supplementary material(File)
File 122.9 KB