Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T22:26:20.276Z Has data issue: false hasContentIssue false

Crystal chemistry of leucite from the Roman Comagmatic Province (central Italy): a multi-methodological study

Published online by Cambridge University Press:  05 July 2018

G. D. Gatta*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy CNR-Istituto per la Dinamica dei Processi Ambientali, Milano, Italy
N. Rotiroti
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy CNR-Istituto per la Dinamica dei Processi Ambientali, Milano, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy
G. Della Ventura
Affiliation:
Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy

Abstract

A multi-methodological study, based on electron microprobe analysis (in wavelength dispersive mode), single-crystal X-ray diffraction (XRD), transmission electron microscopy and single-crystal Fourier transform infrared spectroscopy was performed in order to describe the crystal chemistry of four leucite samples from different localities of the Roman Comagmatic Province (central Italy). All the crystals examined were found to be tetragonal (space group I41/a with a = 13.076–13.103 Å and c = 13.744–13.784 Å) and characterized by a complex twinning (merohedric twins: on the tetragonal planes (110) and (1̄10) with the two individuals having parallel crystallographic axes with a and b interchanged; pseudo-merohedric twins: on the tetragonal planes (101), (011), (1̄01), (01̄ 1), with the two individuals having parallel a (or b) axes and the remaining two axes not parallel). The chemical analyses show that all the samples contain minor Na and Fe. Infrared spectroscopy shows that all samples contain structurally bound water molecules, up to unexpectedly large amounts (~0.4 wt.%) for a nominally anhydrous mineral, suggesting that ‘analcime-like’ substitution (K to Na + H2O) occurs in the leucite samples investigated here. The detection limits of the ‘analcime-like’ substitution by singlecrystal XRD are also discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T. and Gunter, M.E. (2001) Crystal structures of natural zeolites. Pp. 1–57 in: Natural Zeolites: Occurrence, Properties, Application (Bish, D.L. and Ming, D.W., editors). Reviews in Mineralogy and Geochemistry 45, Mineralogical Society of America and the Geochemical Society, Washington D.C. Google Scholar
Baerlocher, Ch., Meier, W.M. and Olson, D.H. (2001) Atlas of Zeolite Framework Types. 5th edition, Elsevier, Amsterdam, Netherlands. 302 pp.Google Scholar
Balassone, G., Beran, A., Fameli, G., Amalfitano, C. and Petti, C. (2006) The hydrous component in leucite from Somma–Vesuvius and Roccamonfina volcanoes (southern Italy)–a FTIR spectroscopic investigat i o n. Neues Jahrbuch für Mi neralogie Abhandlungen, 182, 149–156.Google Scholar
Bellatreccia, F., Della Ventura, G., Ottolini, L., Libowitzky, E. and Beran, A. (2005) The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study. Physics and Chemistry of Minerals, 32, 65–76.CrossRefGoogle Scholar
Beran, A., Langer, K. and Andrut, M. (1993) Single crystal infrared spectra in the OH range fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenolith. Mineralogy and Petrology, 48, 257–268.CrossRefGoogle Scholar
Brown, I.W.M., Cardile, C.M., Mackenzie, K.J.D., Ryan, M.J. and Meinhold, R.H. (1987) Natural and synthetic leucites studied by solid state 29–Si NMR and 57–Fe Mössbauer spectroscopy. Physics and Chemistry of Minerals, 15, 78–83.CrossRefGoogle Scholar
Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmanns, E. and Vezzalini, G. (1997) Recommended nomenclature for zeolite minerals: report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 1571–1606.Google Scholar
Conticelli, S. and Peccerillo, A. (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in Central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos, 28, 221–240.CrossRefGoogle Scholar
Conticelli, S., D’Antonio, M., Pinarelli, L. and Civetta, L. (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from the Roman Province and Southern Tuscany. Mineralogy and Petrology, 74, 189–222.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (2004) The Rock–forming Minerals. Vol. 4B: Framework Silicates. The Geological Society, London, UK.Google Scholar
Della Ventura, G., Bellatreccia, F. and Piccinini, M. (2008) Presence and zoning of hydrous components in leucite from the Alban Hills volcano (Rome, Italy). American Mineralogist (in press).CrossRefGoogle Scholar
Dove, M.T., Cool, T., Palmer, D.C., Putnis, A., Salje, E.K.H. and Winkler, B. (1993) On the role of Al–Si ordering in the cubic–tetragonal phase transition in leucite. American Mineralogist, 78, 486–492.Google Scholar
Faust, G.T. (1963) Phase transition in synthetic and natural leucite. Schweizerische Mineralogische und Petrographische Mitteilungen, 43, 165–195.Google Scholar
Federico, M., Peccerillo, A., Barbieri, M. and Wu, T.W. (1994) Mineralogical and geochemical study of granular xenoliths from the Alban Hill volcano, central Italy: bearing on evolutionary processes in potassic magma chambers. Contributions to Mineralogy and Petrology, 115, 384–401.CrossRefGoogle Scholar
Gatta, G.D., Nestola, F. and Boffa Ballaran T. (2006) Elastic behavior, phase transition and pressure induced structural evolution of analcime. American Mineralogist, 91, 568–578.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N., Boffa Ballaran, T. and Pavese, A. (2008) Leucite at high–pressure: elastic behaviour, phase stability and petrological implications. American Mineralogist (in press).CrossRefGoogle Scholar
Gottardi, G. and Galli, E. (1985) Natural Zeolites. Springer–Verlag, Berlin. 409 pp.CrossRefGoogle Scholar
Heaney, P.J. and Veblen, D.R. (1990) A high–temperature study of the low–high leucite phase transition using the transmission electron microscope. American Mineralogist, 75, 464–476.Google Scholar
Larson, A.C. (1970) Crystallographic Computing (Ahmed, F.R., Hall, S.R. and Huber, C.P., editors). Munksgaard, Copenhagen, Denmark. 291–294 pp.Google Scholar
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American Mineralogist, 82, 1111–1115.CrossRefGoogle Scholar
Mazzi, F., Galli, E. and Gottardi, G. (1976) The crystal structure of tetragonal leucite. American Mineralogist, 61, 108–115.Google Scholar
Newton, H., Hayward, S.A. and Redfern, S.A.T. (2008) Order parameter coupling in leucite: a calorimetric study. Physics and Chemistry of Minerals, 35, 11–16.CrossRefGoogle Scholar
DOI 10.1007/s00269–007–0193–3. Oxford Diffraction (2005) Xcalibur CCD system. CrysAlis Software system, Version 1.170. Oxford Diffraction Ltd.Google Scholar
Palmer, D.C., Putnis, A. and Salje, E.K.H. (1988) Twinning in tetragonal leucite. Physics and Chemistry of Minerals, 16, 298–303.CrossRefGoogle Scholar
Palmer, D.C., Salje, E.K.H. and Schmahl, W.W. (1989) Phase transitions in leucite: X–ray diffraction studies. Physics and Chemistry of Minerals, 16, 714–719.CrossRefGoogle Scholar
Palmer, D.C., Bismayer, U. and Salje, E.K.H. (1990) Phase transitions in leucite: order parameter behaviour and the Landau potential deduced from Raman spectroscopy and birefringence studies. Physics and Chemistry of Minerals, 17, 259–265.CrossRefGoogle Scholar
Palmer, D.C., Dove, M.T., Ibberson, R.I. and Powell, B.M. (1997) Structural behavior, crystal chemistry, and phase transitions in substituted leucite: highresolution neutron powder diffraction studies. American Mineralogist, 82, 16–29.CrossRefGoogle Scholar
Peacor, D.R. (1968) A high temperature single crystal diffractometer study of leucite, (K, Na)AlSi2O6. Zeitschrift für Kristallographie, 127, 213–224.CrossRefGoogle Scholar
Peccerillo, A. (1998) Relationships between ultrapotas– sic and carbonate–rich volcanic rocks in central Italy: petrogenetic and geodynamic implications. Lithos, 43, 267–279.CrossRefGoogle Scholar
Peccerillo, A. (2003) Plio–Quaternary magmatism in Italy. Episodes, 26, 222–226.CrossRefGoogle Scholar
Peccerillo, A. (2005) Plio–Quaternary Volcanismin Italy. Petrology, Geochemistry, Geodynamics. Springer, Heidelberg, 365 pp.Google Scholar
Putnis, C.V., Geisler, T., Schmid–Beurmann, P., Stephan, T. and Giampaolo, C. (2007) An experimental study of the replacement of leucite by analcime. American Mineralogist, 92, 19–26.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELX–97. Programs for crystal structure determination and refinement. University of Göttingen, Germany.Google Scholar
Taylor, D. and Henderson, C.M.B. (1968) The thermal expansion of the leucite group of minerals. American Mineralogist, 53, 1476–1489.Google Scholar
Taylor, D. and MacKenzie, W.S. (1975) A contribution to the pseudoleucite problem. Contributions to Mineralogy and Petrology, 49, 321–333.CrossRefGoogle Scholar
Wilson, A.J.C. and Prince, E. (editors) (1999) International Tables for X–ray Crystallography, Volume C: Mathematical, Physical and Chemical Tables (2nd edition), Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Gatta et al. supplementary material

Deposited Table 5, Bond distances and angles pertaining to the four natural samples of leucite.

Download Gatta et al. supplementary material(File)
File 8.1 KB